| 研究生: |
曾冠雄 Tseng, Guan-Hsiung |
|---|---|
| 論文名稱: |
製備人類凝血酶調節素lectin-like結構區之重組蛋白及其功能分析 Preparation and Functional Analyses of Recombinant Lectin-like Domain of Thrombomodulin |
| 指導教授: |
施桂月
Shi, Guey-Yueh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學研究所 Department of Biochemistry |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | lectin-like結構區 、凝血酶調節素 、重組蛋白 、抗發炎反應 |
| 外文關鍵詞: | recombinant protein, anti-inflammatory, lectin-like domain, thrombomodulin |
| 相關次數: | 點閱:79 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
凝血酶調節素(Thrombomodulin, TM)是一種表現於血管內皮細胞表面的醣蛋白,是生理上重要的抗凝血因子,其蛋白質結構從氮端依序被分為lectin-like結構區(TMD1), EGF-like 結構區(TMD2), serine/ threonine-rich結構區(TMD3), transmembrane結構區(TMD4)及碳端的cytoplasmic結構區(TMD5)。其中,TM的氮端lectin-like結構區與調節免疫反應的C-type lectins具有序列相似性。本論文主要採用兩種不同表現系統製備TM重組蛋白,並以此重組蛋白探討凝血酶調節素lectin-like結構區對於細胞的增殖、移動以及抗發炎反應等等方面的影響。首先利用酵母菌表現系統表現TMD1重組蛋白質,在TM重組蛋白的碳端接有腸激酶切割序列,c-myc epitope以及His-tag等融合蛋白;篩選高表現量的酵母菌株後,誘導重組蛋白大量表現,培養液經由鎳離子親和性樹脂(nickel-chelating Sepharose)管柱,可純化出高純度的TMD1重組蛋白,並利用此重組蛋白自兔子中製備TMD1抗體。人類胚胎腎臟細胞株(HEK293 cell line)則是第二種表現系統,含有重組蛋白的細胞培養液藉由通過Q Sepharose及nickel-chelating Sepharose管柱可達到純化TM重組蛋白的目的。利用相同的哺乳動物細胞表現系統,我們成功地表現TMD12, TMD123, TMD23, TMD2, TMD1+HP等其他五個不同片段的TM重組蛋白,並且證實這些重組蛋白具有活化protein C的功能,將進一步被應用於探討TM不同結構區的生物活性。
關於TMD1的功能,我們發現重組TMD1蛋白並不影響牛主動脈內皮細胞(BAEC)的生長;不過,重組TMD1蛋白可以抑制BAEC的移動。由於細胞與基質間的交互作用對於細胞移動是很重要的,初步推測可溶性TMD1片段可能透過影響基質間的交互作用而干擾細胞的附著而達到抑制細胞移動的效果。此外,由此兩種表現系統所表現的TMD1重組蛋白會抑制人類腫瘤壞死因子α (TNFα)誘導人類臍靜脈內皮細胞(HUVEC)的訊息因子ERK的磷酸化,以及抑制LPS刺激巨噬細胞釋放TNFα。本實驗初步證實TMD1可以透過抑制細胞激素的分泌而達到抗發炎反應的效果,然而其調控發炎反應的機制則有待進一步研究。
Thrombomodulin (TM) is a membrane glycoprotein, which functions as a potent anticoagulant factor. It contains five structure domains: N-termianal lectin-like domain (TMD1), EGF-like domain (TMD2), serine and threonine-rich domain (TMD3), transmembrane domain (TMD4) and C-terminal cytoplasmic domain (TMD5). The extracellular N-terminal lectin-like domain of TM has homology to C-type lectins that are involved in immune regulation. In this study, we explored the role of lectin-like domain of TM in modulating cell proliferation, migration and anti-inflammation. Recombinant human lectin-like domain of TM, TMD1 was prepared by different expression systems. First, human TMD1 gene ligated with enterokinase cutting site, c-myc epitope and His-tag was constructed into the pPICZalpha A vector, and then transformed into Pichia pastoris expression X-33 cells. The yeast-expressed TMD1 was purified with nickel-chelating Sepharose and then recognized with anti c-myc antibody. Polyclonal antibody against the TMD1 protein was generated from TMD1 immunized-rabbit. HEK293 cells-based mammalian expression system was the second tool to prepare recombinant TMD1. TMD1 released in the conditioned medium was purified by Q Sepharose and nickel-chelating Sepharose columns. The other recombinant TM fragments (TMD12, TMD123, TMD1+HP, TMD2, TMD23) were also expressed successfully by HEK293 cells-based mammalian expression system. The anti-coagulant function of these recombinant proteins was determined by in vitro protein C activation test. The biological functions of different functional domains will further be studied using these recombinant proteins.
Recombinant TMD1 had no effect on the proliferation of bovine aortic endothelial cells (BAEC), but it inhibited cell migration. Given that properly regulated cell-substratum interaction is important to the process of cell migration, we propose that soluble TMD1 may interfere cell adhesion by interaction with extracellular matrix. Moreover, TMD1 purified from both expression systems inhibited TNFα-induced ERK phosphorylation in human umbilical vein endothelial cells, and also inhibited Lipopolysaccharide-induced TNFalpha secretion in human monocytic leukaemia U937 cell line. This result suggested that TMD1 had anti-inflammatory properties through suppression of the release of cytokines. The molecular mechanism involved in the anti-inflammatory properties of TMD1 needs further investigation.
Bajzar L. Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic pathway. Arterioscler Thromb Vasc Biol. 20:2511-2518, 2000.
Boffa MC, Burke B, Haudenschild CC. Preservation of thrombomodulin antigen on vascular and extravascular surfaces. J Histochem Cytochem. 35:1267-1276, 1987.
Broze GJ Jr, Higuchi DA. Coagulation-dependent inhibition of fibrinolysis:role of carboxypeptidase and the premature lysis of clots from hemophilic plasma. Blood 88:3815-3823, 1996.
Collins CL, Ordonez NG, Scharfer R, Cook CD, Xie SS, Granger J, Hsu PL, Fink L, Hsu SM. Thrombomodulin expression in malignant pleural mesothelioma and pulmonary adenocarcinoma. Am J Pathol. 141:827-833, 1992.
Conway EM, Boffa MC, Nowakowski B, Steiner-Mosonyi M. An ultrastructural study of thombomodulin endocytosis: internalization occurs via clathrin-coated and non-coated pits. J Cell Physiol. 151:604-612, 1992.
Conway E, Nowakowski B, Steiner-Mosonyi M. Thrombomodulin lacking the cytoplasmic domain efficiently internalizes thrombin via nonclathrin-coated, pit-mediated endocytosis. J Cell Physiol. 158:285-298, 1994.
Conway EM, Pollefeyt S, Collen D, Steiner-Mosonyi M. The amino terminal lectin-like domain of thrombomodulin is required for constitutive endocytosis. Blood 89:652-661, 1997.
Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vriese A, Weitz JI, Weiler H, Hellings PW, Schaeffer P, Herbert JM, Collen D, Theilmeier G. The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med. 196:565-77, 2002.
DeBault LE, Esmon NL, Olson JR, and Esmon CT. Distribution of the thrombomodulin antigen in the rabbit vasculature. Lab Invest. 54:172-178, 1986.
de Munk GA, Parkinson JF, Groeneveld E, Bang NU, Rijken DC. Role of the glycosaminoglycan component of thrombomodulin in its acceleration of the inactivation of single-chain urokinase-type plasminogen activator by thrombin. Biochem J. 290:655-659, 1993.
Esmon CT, Owen WG. Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc Natl Acad Sci USA. 78:2249-2252, 1981.
Esmon CT, Esmon NL, Harris KW. Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. J Biol Chem. 257:7944-7947, 1982.
Tohda G, Oida K, Okada Y, Kosaka S, Okada E, Takahashi S, Ishii H, Miyamori I. Expression of thrombomodulin in atherosclerotic lesions and mitogenic activity of recombinant thrombomodulin in vascular in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 18: 1861-1869, 1998.
Hamada H, Ishii H, Sakyo K, Horie S, Nishiki K, Kazama M. The eqidermal growth factor-like domain of recombinant human thrombomodulin exhibits mitogenic activity for Swiss 3T3 cells. Blood. 86:225-233, 1995.
Hamatake M, Ishida T, Mitsudomi T, Akazawa K, Sugimachi K. Prognostic value and clinicopathological correlation of thrombomodulin in squamous cell carcinoma of the human lung. Clin Cancer Res. 2: 763-766, 1996.
Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY, Wu HL. Thrombomodulin–mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem. 278:46750-46759, 2003.
Sano H, Sohma H, Muta T, Nomura S, Voelker DR, Kuroki Y. Pulmonary surfactant protein A modulates the cellular response to smooth and rough Lipopolysaccharides by interaction with CD14. J Immunol. 163:387-395, 1999.
Honda G, Masaki C, Zushi M, Tsuruta K, Sata M. The roles played by the D2 and D3 domains of recombinant human thrombomodulin in its function. J Biochem. 118:1030-1036, 1995.
Imada M, Imada S, Iwasaki H, Kume A, Yamaguchi H, Moore EE. Fetomodulin: marker surface protein of fetal development which is modulatable by cyclic AMP. Dev Biol. 122:483-491, 1987.
Imada S, Yamaguchi H, Nagumo M, Katayanagi S, Iwasaki H, Imada M. Identification of fetomodulin, a surface marker protein of fetal development, as thrombomodulin by gene cloning and functional assays. Dev Biol. 140:113-122, 1990.
Ishii H, Majerus PW. Thrombomodulin is present in human plasma and urine. J Clin Invest. 76:2178-2181, 1985.
Kennel SJ, Lankford T, Hughes B, and Hotchkiss JA. Quantitation of a murine lung endothelial cell protein, P112, with a double monoclonal antibody assay. Lab Invest. 59:692-701, 1988.
Kokame K, Zheng X, Sadler JE. Activation of thrombin-activable fibrinolysis inhibitor requires epidermal growth factor-like domain 3 of thrombomodulin and is inhibited competitively by protein C. J Biol Chem. 273:12135-12139, 1998.
Koyama T, Parkinson JF, Aoki N, Bang NU, Muller-Berghaus G, Preissner KT. Relationship between post-translational glycosylation and anticoagulant function of secretable recombinant mutants of human thrombomodulin. British J Haematol. 78:515-522, 1991.
Kurosawa S, Galvin JB, Esmon NL, Esmon CT. Proteolytic formation and properties of functional domains of thrombomodulin. J Biol Chem. 262:2206-2212, 1987.
Lager DJ, Callaghan EJ, Worth SF, Raife TJ,and Lentz SR. Cellular localization of thrombomodulin in human epithelium and squamous malignancies. Am J Pathol. 146:933-943, 1995.
Van de Wouwer M, Conway EM. Novel functions of thrombomodulin in inflammation. Crit Care Med. 32:S254-261, 2004.
Maruyama I, Bell CE, and Majerus PW. Thrombomodulin is found on endothelium of arteries, veins, capillaries and lymphatics, and on syncytiotrophoblast of human placenta. J Cell Biol. 101:363-371, 1985.
Maruno M, Yoshimine T, kuroda R, Ishii H, and Hayakawa T. Expression of thrombomodulin astrocytomas of various malignancy and in gliotic and normal brains. J Neurooncol. 19:155-160, 1994.
Maruyama I, Majerus PW. The turnover of thrombin-thrombomodulin complex in cultured human umbilical vein endothelial cells and A549 lung cancer cells. Endocytosis and degradation of thrombin. J Biol Chem. 260:15432-15438, 1985.
McCachren SS, Diggs J, Weinberg JB, and Dittman WA. Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood 78:3128-3132, 1991.
McEver R. Leukocyte interactions mediated by selectins. Thromb Haemost. 66:80-87, 1991.
Molinari A, Giorgetti C, Lansen J, Vaghi F, Orsini G, Faioni EM, Mannucci PM. Thrombomodulin is a cofactor for thrombin degradation of recombinant single-chain urokinase plasminogen activator in vitro and in a perfused rabbit heart model. Thromb Haemost. 69:226-232, 1992.
Nesheim M, Wang W, Boffa M, Nagashima M, Morser J, Bajzar L. Thrombin, thrombomodulin and TAFI in the molecular link between coagulation and fibrinolysis. Thromb Haemost. 78:386-391, 1997.
Parkinson JF, Garcia JG, Bang NU. Decreased thrombin affinity of cell-surface thrombomodulin following treatment of cultured endothelial cells with beta-D-xyloside. Biochem Biophys Res Commun. 169:177-183, 1990.
Patthy L. Detecting distant homologies of mosaic proteins. Analysis of the sequences of thrombomodulin, thrombospondin complement components C9, C8 alpha and C8 beta, vitronectin and plasma cell membrane glycoprotein PC-1. J Mol Biol. 202:689-696, 1988.
Petersen T. The amino-terminal domain of thrombomodulin and pancreatic stone protein are homologous with lectins. FEBS Lett. 231:51-53, 1988.
Polgar J, Lerant I, Muszbek L, Machovich R. Thrombomodulin inhibits the activation of factor XIII by thrombin. Thromb Res. 43:685-690, 1986.
Raife TJ, Lager DJ, Madison KC, Piette WW, Howard EJ, Sturm MT, Chen Y and Lentz SR. Thrombomodulin expression by human keratinocytes. J Clin Invest. 93:1846-1851, 1994.
Schenk-Braat EA, Morser J, Rijken DC. Identification of the epidermal growth factor-like domains of thrombomodulin essential for the acceleration of thrombin-mediated inactivation of single-chain urokinase-type plasminogen activator. Eur J Biochem. 268:5562-5569, 2001.
Murakami S, Iwaki D, Mitsuzawa H, Sano H, Takahashi H, Voelker DR, Akino T, Kuroki Y. Surfactant protein A inhibits peptidoglycan-induced tumor necrosis fector-α secretion in U937 cells and alveolar macrophages by direct interaction with Toll-like receptor 2. J. Biol Chem. 277:6830-6837, 2002.
Shirai T, Shiojiri S, Ito H, Yamamoto S, Kusumoto H, Deyashiki Y, Maruyama I, Suzuki K. Gene structure of human thrombomodulin, a cofactor for thrombin-catalyzed activation of protein C. J Biochem. 103:281-285, 1988.
Suehiro T, Shimada M, Matsumata T, Taketomi A, Yamamoto K, and Sugimachi K. Thrombomodulin inhibits intrahepatic spread in human hepato-cellular carcinoma. Hepatology 21:1285-1290, 1995.
Tamura A, Matsubara O, Hirokawa K, Aoki N. Detection of thrombomodulin in human lung cancer cells. Am J Pathol. 142: 79–85, 1993.
Teasdale M, Bird C, Bird P. Internalization of the anticoagulant thrombomodulin is constitutive and does not require a signal in the cytoplasmic domain. Immunol Cell Biol. 72:480-488, 1994.
Tezuka Y, Yonezawa S, Maruyama I, Matsushita Y, Shimizu T, Obama H, Sagara M, Shirao K, Kusano C, Natsugoe S, et al. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res. 55:4196-4200, 1995.
Weiler-Guettler H, Aird WC, Rayburn H, Husain M, and Rosenberg RD. Developmentally regulated gene expression of thrombomodulin in postimplantation mouse embryos. Development 122:2271-2281, 1996.
Weiler H, Lindner V, Kerlin B, Isermann BH, Hendrickson SB, Cooley BC, Meh DA, Mosesson MW, Shworak NW, Post MJ, Conway EM, Ulfman LH, von Andrian UH, Weitz JI. Characterization of a mouse model for thrombomodulin deficiency. Arterioscler Thromb Vasc Biol. 21:1531-1537, 2001.
Wen DZ, Dittman WA, Ye RD, Deaven LL, Majerus PW, Sadler JE. Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene. Biochemistry 26:4350-4357, 1987.
Wilhelm S, Wilhelm O, Schmitt M, Graeff H. Inactivation of receptor bound pro-urokinase-type plasminogen activator (pro-UPA) by thrombin and thrombin/thrombomodulin complex. Biol Chem Hoppe Seyler. 375:603-608, 1994.
Zushi M, Gomi K, Yamamoto S, Maruyama I, Hayashi T, Suzuki K. The last three consecutive epidermal growth factor-like structures of human thrombomodulin comprise the minimum functional domain for protein C-activating cofactor activity and anticoagulant activity. J Biol Chem. 264:10351-10353, 1989.
Zhang Y, Weiler-Guettler H, Chen J, Wilhelm O, Deng Y, Qiu F, Nakagawa K, Klevesath M, Wilhelm S, Bohrer H, Nakagawa M, Graeff H, Martin E, Stern D, Rosenberg R, Ziegler R, Nawroth P. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest. 101:1301-1309, 1998.