| 研究生: |
席維廷 Steichen, Valentin |
|---|---|
| 論文名稱: |
應用陰極真空電弧觸發裝置於新型脈衝電漿推進器之研發 Development of a new pulsed plasma thruster triggered by a cathodic vacuum arc unit |
| 指導教授: |
李約亨
Li, Yueh-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 真空電弧點火器 、脈衝式電漿推進 、真空電弧推進 、電力推進 、推進器之可靠性 |
| 外文關鍵詞: | vacuum arc ignitor, pulsed plasma thruster, vacuum arc thruster, electric propulsion, thruster reliability |
| 相關次數: | 點閱:160 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
衝式電漿推進(簡稱PPT)是一種電力推進系統。主要是通過脈衝電流與自感應磁場之間的相互作用來產生推力,從而使電漿加速。PPT是用於微型衛星中最具前瞻與可行性的電力推進系統之一。由於它成本低,設計簡單,重量輕且消耗的功率少,因此在軌道高度控制和姿態控制方面具有傑出的優勢。如今的研究集中於以下主要方面:推進器的幾何結構,以及推進劑進料系統的優化。這研究重點在於,設計一種新型PPT,並且整合改良新型的進料系統暨點火系統,簡稱為真空電弧點火器(vacuum arc ignitor, VAI)。VAI是使用真空電弧推進器(vacuum arc thruster, VAT)相同的機制產生電漿,進而誘發點火。使用VAI的優勢在於避免後期剝蝕 (late-time ablation)現象的產生,進而降低推進器性能和使用壽命。
在高真空條件(7×〖10〗^(-5) Torr) 以下,測試該推進器在不同的電極配置條件下的放電現象。結果表明,取決於施加在PPT電極上的電壓,其行為會受到影響。實驗結果顯示,在電壓超過1500V時,點火和第一次放電之間的時間差變得更穩定和一致,並且導致推進器的點火可靠性提高。另外,使用高速攝像機和放電電流測量,一些關於VAI-PPT推進系統在脈衝時間的物理放電過程提出假設,加以解釋。
Pulsed Plasma Thruster (PPT) is a form of electric propulsion in which the plasma is accelerated by the interaction between pulsed current and self-induced magnetic fields to create thrust. PPT is one of the most promising electric propulsive thrusters for small satellites. As it is a low cost, simple in design, lightweight, and is consuming less power, it has excellent advantages for altitude control and station keeping. Nowadays, research is more focused on main aspects: optimization in geometry and feeding methods. In the frame of this study, a new type of PPT has been designed. This thruster used a new modified feeding and ignition system called a vacuum arc ignitor (VAI). This ignitor creates a plasma using the same mechanism as a vacuum arc thruster (VAT). The advantage of using the VAI is that it avoids a late-time ablation that reduces thruster performance and lifetime.
The thruster was tested in high vacuum conditions (7×〖10〗^(-5) Torr) with different electrical configurations. The results showed that depending on the voltage applied on the PPT electrodes, and its behavior is affected. It has been shown that over 1500V, the time difference between the ignition and the primary discharge becomes more stable and consistent and leads to an improvement of the thruster reliability. In addition, using a high-speed camera and discharge current measurement, some hypotheses were raised regarding the physical process involved during the VAI−PPT pulse.
[1] D. M. Goebel and I. Katz, Fundamentals of electric propulsion: Ion and Hall Thrusters, California Institute of Technology,USA, 2008.
[2] T. M. Mel’kumov, Pioneers of Rocket Technology, Selected Works, Academy of Sciences of the USSR, Institute for the History of Natural: McGraw-Hill, 1964.
[3] E. Stuhlinger, Ion Propulsion for Space Flight, New York, 1964.
[4] G. R. Brewer, Ion Propulsion Technology and Applications, New York: Gordon and Breach, 1970.
[5] M. Pietzka, A. Knopp and M. Keidar, “Development and Characterization of a Propulsion System,” UNIVERSITÄT DER BUNDESWEHR, Munich, 2016.
[6] NASA, “Nasa Space Science Data Coordinated Archive,” [Online]. Available: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1964-078C. [Accessed 4 May 2020].
[7] E. Y. Choueiri, “New Dawn of Electric Rockets,” Scientific American, Inc, 2009.
[8] ESA, “Technology CubeSat,” [Online]. Available: https://www.esa.int/Enabling_Support/
Space_Engineering_Technology/Technology_CubeSats. [Accessed 04 May 2020].
[9] C. S. Lara et J. O. Dalmeses, «Design and Performance Analysis»
Polytechnic University of Catalonia (UPC), 2016.
[10] CubeSat.org, “cubesat.org,” [Online]. Available: https://www.cubesat.org/about. [Accessed 05 13 2020].
[11] J. Pascao, O. Teixeira and G. Ribeiro, “A Review of Propulsion Systems for CubeSats,” 2018.
[12] C. D. Child, «Velocity of Ions drawn from the Electric Arc» American Physical Society, vol. 12, n° %13, pp. 137-150, 1901.
[13] R. Tanberg, “On the cathode of an Arc Drawn in Vacuum,” American Physical Society, vol. 35, no. 9, pp. 1080-1089, 1930.
[14] B. Jüttner, “Erosion Craters and Arc Cathode Spots in Vacuum,” Beiträge aus der Plasmaphysik, vol. 1, no. 1, pp. 25-48, 1979.
[15] I. Brown et H. Shiraishi, «Cathode Erosion rates in vacuuum-arc discharge» Plasma Science, vol. 18, pp. 170-171, 1990.
[16] C. W. Kimbli, «Cathode Spot erosion and ionization phenomena in the transition from vacuum to atmospheric pressure arcs» Journal of Applied Science, vol. 45, n° %112, pp. 5235-5244, 1974.
[17] J. E. Daalder, «Erosion and the origin of charged and neutral species in vacuum arcs» Journal of Applied Science, vol. 8, n° 114, pp. 1647-1659, 1975.
[18] J. Kolbeck, A. Anders, I. Beilis et M. Keidar, «Micro-Propulsion based on vacuum arcs» Journal of Applied Science, vol. 125, n° %122, p. 220902, 2019.
[19] J. Schein, N. Qi, R. Binder, M. Krishnan, J. Ziemer, J. Polk et A. Anders, «Low mass vacuum arc thruster system for station keeping missions» pp. 15-19, 2001.
[20] I. Beilis, «Modeling of a microscale short vacuum arc for a space propulsion thruster» Plasma Science, vol. 36, pp. 2163-2166, 2008.
[21] J. Polk, S. M.J., J. Ziemeer, J. Schein, N. Qi et A. Anders, «A Theoretical Analysis of Vacuum Arc Thruster and Vaccum arc Ion Thruster Performance» Plasma Science, vol. 36, pp. 2167-2179, 2008.
[22] G. Sun et Z. Wu, «Ignition mechanism in ablative pulsed plasma thrusters with coaxial semiconductor spark plugs» Acta Astronautica, vol. 151, pp. 120-124, 2018.
[23] R. L. Burton et P. J. Turchi, «Pulsed Plasma Thruster» Journal of Propulsion and Power, vol. 14, n° %15, pp. 717-735, 1998.
[24] Z. Zhe, R. Junxue, T. Haibin, X. Shuting, Y. William, L. Liang et C. Jinbin, «Inter-electrode discharge of an ablative pulsed plasma thruster with asymmetric electrodes,» Plasma Source Science and Technology, vol. 27, n° %112, 2018.
[25] A. Anders, I. G. Brown, R. A. MacGill et M. R. Dickson, «'Trigerless' triggering of vacuum arcs» Journal of Physics D: Applied Physics, vol. 31, n° %15, 1998.
[26] M. H. Samimi, A. Mahari, M. Farahnakian et H. Mohseni, «The Rogowski coil Principles and Applications: A Review» Sensors Journal, vol. 15, pp. 651-658, 2014.
[27] A. Masoumzadeh et A. Habibi, «Design, construction and test of an optimized Faraday cup for beam current determination of a helicon ion source» Vacuum, vol. 159, pp. 99-104, 2019.
[28] N. Sander, T. Jannis et U. Ebert, The Physics of streamer dischagre phenomena, 2020.
[29] B. Stoute, “SlideShare,” 22 12 2016. [Online]. Available: https://www.slideshare.net/BarryStoute/20161222-thermal-and-electromagnetic-propulsion. [Accessed 13 04 2020].
[30] O. Räisänen, «A diagram of an electrostatic ion thruster» 2012.
[31] Edelman, «Description of the operation of a Hall Effect Thruster» 2012.
[32] J. E. &. a. Polk, «A theoretical analysis of vacuum arc thruster performance» from 21st International Electrical Propulsion Conference, Pasadena, CA, 2001.
[33] PicSat, «PicSat unravelling the beta pictoris system» 2018. [En ligne]. [Accès le 18 04 2020].
[34] S. Tonooka, I. Funaki, S. Iwabuchu, T. Nakamura, S. Shinohara and H. Nishida, Thruster Characteristics of Helicon Plasma Thrusters, 2015.
[35] A. R. Tummala and A. Dutta, “An overview of Cube-Satellite Propulsion Technologies and Trends,” Aerospace, vol. 4, 2017.