簡易檢索 / 詳目顯示

研究生: 龔逸軒
Kung, Yi-Hsuan
論文名稱: 田口方法分析氣旋捕蚊機構設計
Application of Cyclone in Design of Mosquito Trap by Using Taguchi Method
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 70
中文關鍵詞: 田口方法補蚊設計氣旋構造
外文關鍵詞: Taguchi Method, cyclone design, mosquito trap
相關次數: 點閱:156下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地理位置處於亞熱帶國家氣候溼熱,加上國人習慣在家中擺設器皿儲水,所以登革熱疫情始終居高不下。在登革熱的疫苗尚未發展出來之前,人們能做的就是防範的叮咬。市面上的補蚊產品大部分僅使用紫外線燈管,或是搭配光觸媒來補蚊,一方面誘蚊的因子太少,另一方面,若要將抓到的病媒蚊做後續的辨認處理,保留蚊子軀體的完整性很重要,因此本研究目的是設計一個多引誘因子的捕蚊機構。
    本論文利用田口方法,分析控制因子,找出最佳水準組合,並透過實際實驗,與市面上常看到的因子水準組合做比對,最後驗證結果是否能達到有效的補蚊功能,根據實驗結果,本論文找出的最佳組合提升了補蚊隻數以及降低了每次捕蚊隻數的差異性;補蚊設計則利用3D列印設計外觀,搭配氣旋構造,可以用來將捕捉到的蚊子完整的保留下來,最後捕捉到的蚊子經過光遮斷通道後,回授資訊給單晶片做後續的馬達控制。

    As Taiwan is located in sub-tropic zone, the climate here is hot and humid during summer season. As a consequence, the domestics in Taiwan are used to place some buckets/vessels at home, this usually leads to dengue epidemic always serious and critical. Before the vaccine is developed, all we can do is to prevent any chance of contact from mosquitos.

    Most of the products on the local market to capture/kill mosquitos are either by using UV light method or by Photo catalyst method, which seems don't have much effectiveness to do with. Besides killing the mosquitos, we also hope to maintain the mosquito bodies in intact in case there are some identification processes needs to be done further. As a result, the purpose of this thesis is to accomplish a multi-incentive design that can achieve both requirements, i.e. killing and keep the mosquito bodies in intact. This thesis analyzes control factors by using Taguchi method. Through the practical experiments, we found out the optimal level of control factors. Moreover, we compare it to the common incentive factor on the market.

    中文摘要 i Extended Abstract ii 圖目錄 xi 目錄 xiv 第 一 章 序論 1 1.1 研究背景與動機 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.3.1 捕蚊機構回顧 3 1.3.2 實驗方法及回顧 5 1.3.3 捕蚊機構設計回顧 8 1.4 研究貢獻 10 1.5 論文架構 10 第 二 章 系統架構與硬體介紹 11 2.1 整體系統架構 11 2.2 驅動與系統硬體介紹 12 2.2.1 PIC18F4520單晶片 12 2.2.2 直流降壓模組 15 2.2.3 電熱片 15 2.2.4 伺服馬達 16 2.2.5 直流馬達 17 2.2.6 直流風扇 19 2.3 感測器模組 20 2.3.1 二氧化碳感測器 20 2.3.2 溫度感測器 21 2.3.3 光遮斷器 22 2.4 氣體硬體介紹 22 2.4.1 氣瓶介紹 22 2.4.2 電磁閥 23 2.5 田口方法介紹 24 第 三 章 捕蚊機構設計與驗證 25 3.1 捕蚊機構外觀設計 26 3.2 捕蚊機構內部設計 27 3.2.1 機構設計比例 27 3.2.2 收集效率 29 3.2.3 設計驗證 32 3.3 收集盒與遮斷通道 34 3.4 偵蚊設計 35 3.5 載台設計 37 3.5.1 載台運作外觀 37 3.5.2 載盤設計 39 第 四 章 程式流程規劃與軟體設計 41 4.1 軟體架構圖 41 4.2 MG811感測器程式 43 4.3 DS18b20溫度感測程式 44 第 五 章 實驗方法與結果討論 46 5.1 實驗設計步驟 46 5.2 S/N比 47 5.3 直交表與控制因子 49 5.4 實驗結果與分析 51 5.4.1 晚上實驗分析 53 5.4.2 白天實驗分析 53 5.4.3 實驗結果分析 59 第 六 章 結論與建議 63 6.1 結論 65 6.2 建議 65 參考文獻 67

    [1] C. S. McBride, “Genes and Odors Underlying the Recent Evolution of Mosquito Preference for Humans,” Current Biology No 26, pp. 41-46, January 11, 2016.
    [2] S. S. Saini, D. Bansal, G. S. Brar, E. Sidhu, “Solar Energy Driven Arduino based Smart Mosquito Repeller System,” IEEE WiSPNET conference, pp. 1239-1243, 2016.
    [3] C. Boonsri, S. Sumriddetchkajorn and P. Buranasiri, “Laser based mosquito repelling module,” Photonics Global Conference (PGC), IEEE, pp.1-4, 2012.
    [4]衛生福利部疾病管制http://data.tainan.gov.tw/dataset/denguefevercases, 2017。
    [5] A. K. Supriatna, N. Anggriani, Melanie, ”The Optimal Strategy of Wolbachia-Infected Mosquitoes Release Program,” Control and Automation (ICA), IEEE, pp. 38-43, 2016.
    [6] A. Biswas, N. Siddique, B. Tian, E. Wong, K. Caillouet, Y. Motai, “Design of a fiber-optic sensing mosquito trap,” Sens J IEEE, pp. 4423-4431, 2013.
    [7] C. E. Schreck, H. K. Gouck, and K. H. Posey, “An experimental Plexiglas mosquito trap utilizing carbon dioxide,” Mosquito News, vol. 30, no. 4, pp. 641–645, 1970.
    [8] R. C. Evans, Mosquito trap. U.S. Patent No. 3997999 A.
    [9] C. C. George, Mosquito and insect trap, U.S. Patent No. 1693368 A.
    [10] S. Jackson, Mosquito trap, U.S. Patent No. 3796001 A.
    [11] S. B. Clyde, Collapsible mosquito trap, U.S. Patent No. 3120075A.
    [12] L. J. Zwiebel, W. Takken, ” Olfactory regulation of mosquito–host interactions,” ELSEVIER vol. 34. Issue, pp. 645-652, 2004.
    [13] H. Gouck, “Host preferences of various strains of Aedes aegypti and Aedes simpsoni as determined by an olfactometer,” Bull. World Health Org. 47, pp.680–683. 1972.
    [14] C. S. McBride, F. Baier, A.B. Omondi, S. A. Spitzer, J. Lutomiah, R. Sang, R. Ignell, and L. B. Vosshall, “Evolution of mosquito preference for humans linked to an odorant receptor,” Nature 515, pp. 222–227, 2014.
    [15]R. T. Carde, “Multi-Cue Integration: How Female Mosquitoes Locate a Human Host,“ Department of Entomology, University of California, vol 25, pp. 793-795, 2015.
    [16] F. V. Breugel, J. Riffell, A. Fairhall, H. Michael. Dickinson, Mosquitoes Use Vision to Associate Odor Plumes with Thermal Targets,” Current Biology vol 25, Issue 16, pp. 2123–2129, 17 August 2015.
    [17] 網頁http://www.inadays.com/tc/, 2017.
    [18] N. Gopani and A. Bhargava, “Design of High Efficiency Cyclone for Tiny Cement Industry,” International Journal of Environmental Science and Development, vol. 2, No. 5, October 2011.
    [19] S. Bernardo, M. Mori, A. P. Peres, R. P. Dionı´sio,” 3-D computational fluid dynamics for gas and gas-particle flows in a cyclone with different inlet section angles,” Elsevier vol 162, Issue 3, pp. 190-200, 14 March 2006.
    [20] F. Boysan, W. H. Ayers, J. A. Swithenbank,” A fundamental mathematical modeling approach to cyclone design,” Institution of Chemical Engineers 60, pp. 222 – 230, 1982.
    [21] J. Dyson, Combined disc and shroud for dual cyclonic cleaning apparatus, U.S. Patent No. 4853008 A.
    [22] J. Dyson, Cleaning apparatus, U.S. Patent No. 4643748 A.
    [23] J. Dyson, Combined disc and shroud for dual cyclonic cleaning apparatus, U.S. Patent No. 4853008 A.
    [24] Lapple, “C. E. Processes Use Many Collection Types,” Chem. Eng., 58(5), pp.144–151, 1951.
    [25] W. Barth, “Design and Layout of the Cyclone Separator on the Basis of New Investigations,” BWK, 8 (Heft 1), pp. 1–9, 1956.
    [26] D. Leith, W. Licht, ”The Collection Efficiency of Cyclone Type Particle Collectors—A New Theoretical Approach,” AIChE Symposium Series vol. 126, 196–206, 1972.
    [27] P. W. Dietz, “Collection Efficiency of Cyclone Separators,” AIChE J. , 27(6), pp. 888–892, 1981.
    [28] H. Mothes, F. Löffler, “Prediction of Particle Removal in Cyclone Separators,” International chemical engineering vol 28, pp. 231–240, 1988.
    [29] L. Enliang, W. Yingmin, “A new collection theory of cyclone separators,” AIChE, vol. 35, pp. 666–669, 1989.
    [30] D. L. Iozia, D. Leith, “The Logistic Function and Cyclone Fractional Efficiency,” Aerosol Sci. Techn. , 12, pp. 598–606, 1989.
    [31] H. Büttner, “Size Separation of Particles from Aerosol Samples using Impactors and Cyclones,” Syst. Charact. 5, pp. 87–93, 1988.
    [32]網頁http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322003000400010, 2017.
    [33] Stairmand, C. J., ‘‘The Design and Performance of Cyclone Separators,’’
    Trans. IChemE, 29, pp. 356, 1951.
    [34] Lapple, “gravity and centrifugal separation,” Ind, Quart. 11, pp. 40-48, 1951.
    [35] P. swift, “steam heat,” eng. 38:453, 1969.
    [36]李輝煌, ”田口方法品質設計的原理與實務,” 高立圖書,2000。
    [37]網頁 http://ww1.microchip.com/downloads/en/devicedoc/39631a.pdf, 2017.
    [38]網頁http://www.roboard.com/Files/RS-1270/RoBoard_RS-1270.pdf, 2017.
    [39]網頁 https://www.pololu.com/category/51/pololu-metal-gearmotors, 2017/7.
    [40]網頁 https://www.sparkfun.com/datasheets/Components/GP1A57HRJ00F.pdf, 2017.
    [41]網頁 http://www.thecementgrindingoffice.com/cyclonesdevelop.html, 2017 .
    [42]網頁 http://www.cherd.ichemejournals.com/article/S0263-8762(10)00124-3/fulltext, 2017.
    [43]網頁 https://engineering.dartmouth.edu/~d30345d/courses/engs37/Cyclones.pdf, 2017/7.
    [44]網頁 http://eph.ccs.miami.edu/precise/GasSensorSpecs/CO2.pdf, 2017.
    [45]網頁 https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf, 2017.

    無法下載圖示 校內:2020-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE