簡易檢索 / 詳目顯示

研究生: 劉宇軒
Liu, Yu-Hsuan
論文名稱: 調制磁場對單層石墨帶藍道能帶的影響
The effects of the modulated magnetic field on the Landu levels of monolayer graphene ribbon
指導教授: 林明發
Lin, Min-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 40
中文關鍵詞: 藍道能帶調制磁場石墨帶電子特性
外文關鍵詞: Graphene ribbon, modulated magnetic field, Landau level, electronic properties
相關次數: 點閱:139下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一維奈米石墨帶的磁電現象可由Peirl 緊束模型模擬,當有外加磁場時由於有藍道態的出現造成能帶中有部分平坦的區域 。 此文章的重點在當系統中除了均勻磁場外,在外加調制磁場對能帶及態密度的影響 。 當系統中有調制磁場時會造成其電子特性有明顯改變,包含了能帶平坦部分的位移、曲率的改變以及態密度圖中峰個數、位置及高度的改變。文章中也會討論當系統寬度變化下對此含有不均勻磁場的單層石墨帶造成的影響。

    Magnetoelectronic properties of one dimensional nanographene ribbon have been investigated by the Peirl tight-binding model recently. The appearance of partial flat band (Landau energy band) is contributed by eigenstates of hamiltonian as the magnetic flux
    exists in the system. It could be drastically affected by a weak spatially modulated magnetic field and the effect strongly depend on the field strength, period, and ribbon width. The main features of energy band are directly reflected in density of states, such as position, height and the number of dominant strong peaks. The quantum confinement and the relation between energy of band edge state with system width and with field strength will be discussed in this article also.

    1 Introduction 5 2 Theory 6 3 Energy band 14 4 Wavefuncion 18 5 Density of State 21 6 Variation of B', R, and Ny 24 7 Conclusion 25

    1. Y. Zhang, Y. -W. Tan, H. L. Stormer, and P. Kim, Nature (London)
    438, 201 (2005)
    2. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E.
    J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruo,
    Nature (London) 442, 282 (2006)
    3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson,
    I. V. Grigorieva, S V. Dubonos, and A. A. Firsov, Nature 438, 197
    (2005)
    4. A. De Martino, L. Dell'Anna, and R. Egger, Phys. Rev. Lett. 98,
    066802 (2007)
    5. N. M. R. Peres, A. H. Castro Neto, and F. Guinea, Phys. Rev. B 73,
    241403 (2006)
    6. H. Hiura, Appl. Surf. Sci. 222, 374 (2004)
    7. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T.
    Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A.
    de Heer, Science 3012, 1191 (2006)
    8. M. Y. Han, B.  Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98,
    206805 (2007)
    9. K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. B 59,
    12 (1999)
    10. M. Ezawa, Phys. Rev. B 73, 045432 (2006)
    11. H. Zheng, Z. F. Wang, T. Luo, Q. W. Shi, and J. Chen, Phys. Rev. B
    75, 165414 (2007)
    12. C. P. Chang, Y. C. Huang, C. L. Lu, J. H. Ho, T. S. Li, and M. F. Lin,
    Carbon 44, 508 (2006)
    13. H. Hsu and L. E. Reichl, Phys. Rev. B 76, 045418 (2007)
    14. D. S. Novikov, Phys. Rev. Lett. 99, 056802 (2007)
    15. K. Wakabayashi, Phys. Rev. B 64, 125428 (2001)
    16. N. M. R. Peres, A. H. Castro Neto, and F. Guinea, Phys. Rev. B 73,
    195411 (2006)
    17. D. Finkenstadt, G. Pennington, and M. J. Mehl, Phys. Rev. B 76,
    121405 (2007)
    18. A. Lherbier, B. Biel, Y. Niquet, and S. Roche, Phys. Rev. Lett. 100,
    036803 (2008)
    19. C. P. Chang, B. R. Wu, R. B. Chen, and M. F. Lin, J. Appl. Phys.
    101, 063506 (2007)
    20. L. Brey and H. A. Fertig, Phys. Rev. B 75, 125434 (2007)
    21. K. Nakada, and M. Fujita, Phys. Rev. B 54, 24 (1996)
    22. M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys.
    Soc. Jpn. 65, 1920 (1996)

    下載圖示 校內:2010-01-22公開
    校外:2010-01-22公開
    QR CODE