| 研究生: |
蔡維峻 Tsai, Wei-Jun |
|---|---|
| 論文名稱: |
崎嶇地形移動機器人平台開發 Development of the Rough Terrain Mobile Robot Platform |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | Rocker Bogie 、崎嶇地形跨障 、雷射地圖SLAM |
| 外文關鍵詞: | Rocker Bogie, Overcoming the rough terrain, Laser map building |
| 相關次數: | 點閱:200 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研製一台能夠跨越包含沙地及礫石地的崎嶇地形的機器人。環境表現中,沙地屬於易塌陷地形,礫石地則與輪胎具有高摩擦係數,不易前進,為了適應類似的地形,機器人以Rocker Bogie的結構作為設計。
機器人以dsPIC30F4011做作為控制晶片,用以驅動馬達及處理感測器的訊號。並使用CAN Bus 作為各晶片的通訊界面,而以RS-232聯絡電腦。
機器人使用雷射感測器搭配360度的旋轉鏡面及GPS感測器作為周遭地形偵測,及自身定位功能。GPS能取得小於兩公尺誤差的環境資訊;雷射感測器所得到360度的環境資訊後,將所有的環境地圖相互重疊為一組新的地圖後與GPS中已知地圖重合,用以確定目前位置並為使用者提供環境資訊。
關鍵字:Rocker Bogie、崎嶇地形跨障、雷射地圖SLAM
SUMMARY
This thesis develops a mobile robot platform for overcoming the rough terrain which includes gravel and sandy terrain. Gravel terrain is too hard whereas sandy terrain is too soft and can be easily collapsed. Both of gravel and sandy terrains are rough for mobile robot movement. The present mobile robot platform uses Rocker-Bogie suspension to accommodate robots for both rough terrains.
The brain of this robot platform is microcontroller dsPIC30F4011 which can drive motors to move and process signals received from the sensors. The way to communicate with every microcontroller is by CAN bus, except the personal computer and the main microcontroller. These latter two communicate via RS232.
On the mobile robot system, the sensors include a ranging laser and a Global Positioning System (GPS). The latter can locate a position within 2m and it can also obtain environmental information by using real world map. The laser is assembled with a specifically homemade mirror to rotate 360 degrees continuously for environmental ranging detection. Whenever the laser scans a circle, an environmental map can be made. By overlapping two maps from both GPS and laser sensor and using interface will enable map building with accurate environmental and locational information
Keywords: Rocker Bogie, Overcoming the rough terrain, Laser map building
[1] R. A. Lindemann and C. J. Voorhees, “Exploration Rover mobility assembly design, test and performance,” Systems, Man and Cybernetics, 2005 IEEE International Conference, pp. 450-455, 2005.
[2] S. Lee, S. Huh, S. Park, and D. H. Shim, “Development of an exploration rover platform for sample return mission,” Ubiquitous Robots and Ambient Intelligence (URAI), 2014 11th International Conference, pp. 594-599, 2014.
[3] D. Choi, J. Oh and J. Kim, “Analysis method of climbing stairs with the rocker-bogie mechanism,” Journal of Mechanical Science and Technology, Vol. 27, No. 9, 2783-2788, 2013,
[4] D. Choi, J. R. Kim, S. Cho, S. Jung and J. Kim, “Rocker-Pillar: design of the rough terrain mobile robot platform with caterpillar tracks and rocker bogie mechanism,” Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference, pp. 3405-3410, 2012.
[5] D. Michel and K. McIsaac, “New rocker-bogie and terramechanics-based wheel/soil interaction models for planetary rovers,” Mechatronics and Automation (ICMA), 2012 International Conference, pp. 2417-2422, 2012.
[6] W. S. Eom, Y. K. Kim, J. H. Lee, G. H. Choi and E. S. Sim, “Study on a suspension of a planetary exploration rover to improve driving performance during overcoming obstacles,” Journal of Astronomy and Space Sciences, Vol. 29, No. 4, pp. 381-387, 2012.
[7] Y. Kim, W. Eom, J. H. Lee and E. S. Sim, “Design of Mobility System for Ground Model of Planetary Exploration Rover,” Journal of Astronomy and Space Sciences, Vol. 29, No. 4, pp. 413-422, 2012.
[8] 陳志豪(2004),基於紅外線感測器之清潔機器人導航設計。國立交通大學碩士論文。
[9] 林于琬(2005),以超音波感測器建立自走車環境地圖之研究。國立成功大學碩士論文。
[10] G. Lawitzky, “A navigation system for cleaning robots,” Autonomous Robots, Vol. 9, No. 3, pp. 255-260, 2000.
[11] L. I. Yibin, L. I. Caihong and Z. Zhang, “Search strategy of path for mobile robot,” Electronics and Safety, 2005. IEEE International Conference, pp. 222-227, 2005.
[12] D. Joho, C. Stachniss, P. Pfaff and W. Burgard “Autonomous exploration for 3D map learning,” Autonome Mobile Systeme 2007. Springer, Berlin, Heidelberg, pp. 22-28, 2007.
[13] R. Triebel, P. Pfaff and W. Burgard, “Multi-level surface maps for outdoor terrain mapping and loop closing,” Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference, pp. 2276-2282, 2006
[14] J. S. Oh, Y. H. Choi, J. B. Park and Y. F. Zheng, “Complete coverage navigation of cleaning robots using triangular-cell-based map,” IEEE Transactions on Industrial Electronics, Vol. 51, No. 3, pp. 718-726, 2004.
[15] V. Sommer and A. Rocher, “A new exploration strategy for mobile robots based on a cost function approach,” Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference, pp. 1697-1702, 2003.
[16] 林宗德(2005),居家清潔機器人之全域覆蓋路徑規劃與實現。國立成功大學碩士論文。
[17] H. Choset, “Coverage of known spaces: The boustrophedon cellular decomposition,” Autonomous Robots, Vol. 9, No. 3, pp. 247-253, 2000.
[18] P. Fiorini and E. Prassler, “Cleaning and household robots: A technology survey,” Autonomous robots, Vol. 9, No. 3, pp. 227-235, 2000.
[19] V. Pillac, M. Gendreau, C. Guéret and A. L. Medaglia, “A review of dynamic vehicle routing problems,” European Journal of Operational Research, Vol. 225, No.1, pp. 1-11, 2013.
[20] 王婷(2011),戶外式清潔機器人之研發。國立成功大學碩士論文。
[21] P. S. Schenker, T. L. Huntsberger, P. Pirjanian, E. T. Baumgartner, and E. Tunstel, “Planetary rover developments supporting mars exploration, sample return and future human-robotic colonization,” Autonomous Robots, Vol. 14, No. 2, pp. 103-126, 2003.
[22] H. Hacot, S. Dubowsky and P. Bidaud, “Analysis and simulation of a rocker-bogie exploration rover.” COURSES AND LECTURES-INTERNATIONAL CENTRE FOR MECHANICAL SCIENCES, pp. 95-102, 1998,
[23] 網頁 https://pics-about-space.com/rocker-bogie-suspension-mars-rover?p=2, July, 2017
[24] S Manolache, P. Eles and Z. Peng, “Optimization of soft real-time systems with deadline miss ratio constraints,” 10th Real-Time and Embedded Technology and Applications Symposium, Proceedings. RTAS, pp. 562-570, 2004.
[25] J. Kaiser and M. Mock, “Implementing the real-time publisher/subscriber model on the controller area network (CAN),” Object-Oriented Real-Time Distributed Computing, 1999. (ISORC'99) Proceedings. 2nd IEEE International Symposium, pp. 172-181, 1999.
[26] M. Farsi, K. Ratcliff and M. Barbosa, “An overview of controller area network. Computing & Control Engineering Journal, Vol. 10, No. 3, pp. 113-120, 1999.
[27] 網頁https://www.pololu.com/product/2503, July, 2017
[28] 網頁http://www.electronicoscaldas.com/datasheet/MG996R_Tower-Pro.pdf, July, 2017.
[29] 網頁
https://github.com/PulsedLight3D/LIDAR-Lite-Documentation/blob/master/Docs/LIDAR-Lite-v2-Docs.pdf, July, 2017.
[30] 網頁
https://www.u-blox.com/sites/default/files/products/documents/NEO-7_DataSheet_%28UBX-13003830%29.pdf 2017/07/13, July, 2017.
[31] 網頁
https://www.u-blox.com/sites/default/files/products/documents/NEO-7_ProductSummary_%28UBX-13003342%29.pdf, July, 2017.
[32] 網頁
https://mars.nasa.gov/msl/mission/instruments/radiationdetectors/dan, July, 2017.
[33] 網頁
http://ww1.microchip.com/downloads/en/devicedoc/70135C.pdf, July, 2017.
[34] 網頁http://wiki.csie.ncku.edu.tw/embedded/CAN, July ,2017.
[35] 網頁
http://beatty-robotics.com/wp-content/uploads/Counter-Rotating-Differential-Close-Up.jpg, July ,2017.