簡易檢索 / 詳目顯示

研究生: 蔡元鈞
Tsai, Yuan-Chun
論文名稱: 無線隨意網路下提供終點對終點服務品質保證之跨層協定設計
Cross-layer Protocol Design for End-to-end QoS in Wireless Ad Hoc Networks
指導教授: 蘇賜麟
Su, Szu-Lin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 65
中文關鍵詞: 無線隨意網路路由層協定介質存取控制層協定跨層協定設計服務品質保證
外文關鍵詞: Wireless ad hoc networks, routing protocol, MAC protocol, cross layer design, quality of service
相關次數: 點閱:132下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們提出一個跨路由層與介質存取控制層的協定設計,名為Signal-to-Interference-plus-Noise-Ratio and Quality-of-Service (SINR-QoS),目的是在無線隨意網路下提供終點對終點的服務品質保證。SINR-QoS中的路由層協定名為SINR-QoS-routing (SQ-routing),介質存取控制層協定名為SINR-QoS-MAC (SQ-MAC)。SINR-QoS設計基於spatial-reuse time division multiple access架構,並以signal-to-interference-plus-noise ratio (SINR)為依據規劃空間再利用,以精準反映實體層傳輸特性。當有資料串流產生時,SQ-routing會為其決定一條路徑,並為路徑上各鏈結規劃使用時槽、傳輸速率、與傳輸功率。SQ-routing的規劃是基於SINR,於是我們設計SQ-MAC以獲得SINR相關資訊。SQ-MAC使用一種嶄新的信號方式,以克服通訊範圍的限制,而其運作僅需簡單的分散式協調。我們更進一步提出SINR-QoS的演進版本,目的是利用合作式傳輸,提升快速衰減通道環境下的終點對終點服務品質保證。模擬結果顯示,SINR-QoS與其演進版本,比起既有方法能達到更高的終點對終點吞吐量與更穩定的終點對終服務品質保證。

    In this thesis, we propose a cross routing and MAC protocol design, named Sig-nal-to-Interference-plus-Noise-Ratio and Quality-of-Service (SINR-QoS), to provide end-to-end QoS in wireless ad hoc networks. The routing part of SINR-QoS is named SINR-QoS-routing (SQ-routing), and the MAC part of SINR-QoS is named SINR-QoS-MAC (SQ-MAC). SINR-QoS is designed based on spatial-reuse time di-vision multiple access (STDMA). SINR-QoS uses SINR as criterion to coordinate the spatial reuse, for SINR can precisely reflect the characteristics of physical transmis-sions. When a data flow arrives, SQ-routing determines a route, and assigns time slot, data rate, and transmit power to each link on the route. The assignment is SINR-based, and thus requires SINR-related information to coordinate the co-channel interference. Hence, SQ-MAC is proposed for nodes to acquire and update the SINR-related in-formation. SQ-MAC adopts a novel signaling design, which can overcome the limita-tion of communication range, and requires only simple and slight distributed coordi-nation. We also propose an advanced version of SINR-QoS, which exploits coopera-tive communication to improve end-to-end QoS under fading environments. Simula-tion results show that, SINR-QoS series outperform the existing QoS approaches in total end-to-end throughput and reliability.

    Chinese Abstract i English Abstract ii Contents iii List of Tables iv List of Figures v 1. Introduction 1 2. System Overview for Non-fading Channel 6 2.1 System Model - Non-fading Channel 6 2.2 Cross Layer Collaboration 8 3. SQ-MAC Protocol 9 3.1 Determinations of Interference-plus-noise Power 10 3.2 Determination of Maximum Allowable Transmit power 10 4. SQ-Routing Protocol 13 4.1 The RREQ Procedure 13 4.2 The RREP Procedure 19 5. SINR-QoS Performance Evaluation 21 5.1 Transmit power Adjustment 22 5.2 Performance Comparison with DSRP 26 6. Advanced SINR-QoS for Fading Environments 31 7. System Overview for Fading Environments 35 7.1 System Model – Fading Channel 35 7.2 Basic Transmission Modes 36 8. Supplementary Cooperation and End-to-end Outage Probability 39 9. SC-Routing Protocol 42 9.1 The RREQ Procedure of SC-routing 42 9.2 The RREP Procedure 48 10. SC-Routing Performance Evaluation 52 10.1 Route Metric Selection 53 10.2 Comparison between Different QoS Schemes 56 11. Conclusions 60 References 62

    [1] C. E. Perkins and P. Bahgwat, “Highly Dynamic Destination-Sequenced Dis-tance-Vector Routing (DSDV) for Mobile Computers,” ACM Special Interest Group on Data Communication (SIGCOMM ’94), 1994.
    [2] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Vienno, “Optimized Link State Routing Protocol for Ad Hoc Networks,” Proc. IEEE Multi Topic conference (INMIC’01), 2001.
    [3] J. Broch, D. Johnson, and D. Mnltz, “The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks,” IETF,
    http://www.ietf.org/internet-drafts/draft-ielf-manet-dsr-0l.txt. Dec. 1998.
    [4] C. Perkins, E. Royer, and S. Das, “Ad Hoc on Demand Distance Vector (AODV) Routing,” IETF, http://www.ietf.org/internet-drafts/draft-ietf-manet.aodv-03.txt, June 1999.
    [5] IEEE 802.11, www.ieee802.org/11, 2012.
    [6] C. Zhu and M.S. Corson, “A Five-Phase Reservation Protocol (FPRP) for Mobile Ad Hoc Networks,” ACM Journal of Wireless Networks, vol. 7, pp. 371-384, Aug. 2001.
    [7] L. Chen and W. B. Heinzelman, “QoS-Aware Routing Based on Bandwidth Es-timation for Mobile Ad Hoc Networks,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 3, pp. 561–572, Mar. 2005.
    [8] Y. Yang and R. Kravets, “Contention-Aware Admission Control for Ad Hoc Net-works,” IEEE Trans. on Mobile Computing, vol. 4, no. 4, pp. 363–377, July 2005.
    [9] C. Sarr, C. Chaudet, G. Chelius, and I.G. Lassous, “Bandwidth Estimation for IEEE 802.11-Based Ad Hoc Networks,” IEEE Trans. on Mobile Computing, vol. 7, no. 10, pp.1228–1241, Oct. 2008.
    [10] S.L. Su, Y.W. Su, and J.Y. Jung, “Single Phase Admission Control for QoS-Routing Protocol in Ad Hoc Networks,” Ad Hoc Networks, vol. 9, pp. 1359-1369, Sep. 2011.
    [11] T.H. Liu and W.H. Liao, “Interference-Aware QoS Routing for Multi-Rate Mul-ti-Radio Multi-Channel IEEE 802.11 Wireless Mesh Networks,” IEEE Trans. on Wireless Communication, vol. 8, no. 1, pp. 166–175, Jan. 2009.
    [12] K.P. Shih, C.Y. Chang, Y.D. Chen, and T.H. Chuang, “Dynamic Bandwidth Al-location for QoS Routing on TDMA-Based Mobile Ad Hoc Networks,” Com-puter Communications, vol. 29, May 2006.
    [13] W.H. Liao, Y.C. Tseng, J.P. Sheu, and S.L. Wang, “A Multi-Path QoS Routing Protocol in a Wireless Mobile Ad Hoc Network,” Proc. IEEE International Con-ference on Networking (ICN ’01), 2001
    [14] Z. Xu, C. Huang, and Y. Cheng, “Interference-Aware QoS Routing in Wireless Mesh Networks,” Proc. IEEE Mobile Ad-hoc and Sensor Networks (MSN’08), 2008.
    [15] K. A. M. Al-Soufy and A. M. Abbas, “CAQS: A Contention Aware Quality of Service Routing for TDMA-Based Ad Hoc Networks,” Proc. IEEE Computa-tional Intelligence and Communication Networks (CINC’10), 2010.
    [16] K.A.M. Al-Soufy and A.M. Abbas, “A Quality of Service Aware Routing for TDMA-Based Ad Hoc Networks,” Proc. IEEE Networked Digital Technologies (NDT '09), 2009.
    [17] P. Li, Q. Shen, Y. Fang, and H. Zhang, “Power Controlled Network Protocols for Multi-Rate Ad Hoc Networks,” IEEE Trans. on Wireless Communications, vol. 8, no. 4, pp. 2142-2149, Apr. 2009.
    [18] K. Hedayati and I. Rubin, “A Robust Distributive Approach to Adaptive Power and Adaptive Rate Link Scheduling in Wireless Mesh Networks,” IEEE Trans. on Wireless Communications, vol. 11, no. 1, pp. 275-283, Jan. 2012.
    [19] J. Yee and H. Pezeshki-Esfahani, “Understanding Wireless Lan Performance Tradeoffs,” Communication Systems Design, Nov. 2002.
    [20] High Rate Ultra Wideband PHY and MAC Standard, ECMA-368, 2nd Edition, December 2007.
    [21] Sklar, B. (1997). Rayleigh fading channels in mobile digital communication sys-tems part 1: characterization. IEEE Communication Magazine, 35, 90-100.
    [22] Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50, 3062-3080.
    [23] Moh, S., & Yu, C. (2011). A cooperative diversity-based robust MAC protocol in wireless ad hoc networks, IEEE Transactions on Parallel and Distributed Systems, 22, 353-363.
    [24] Shan, H., & Zhuang, W. (2009). Distributed cooperative MAC protocol for mul-tihop wireless networks, IEEE Communication Magazine, 47, 126-133.
    [25] Shan, H., Cheng, H. T., & Zhuang, W. (2011). Cross-layer cooperative MAC protocol in distributed Wireless Networks. IEEE Transactions on Wireless Com-munications, 10,2603-2615.
    [26] Zhou, Y., Liu, J., Zheng, L., Zhai, C., and Chen, H. (2011). Link-utility-based cooperative MAC protocol for wireless multi-hop networks. IEEE Transactions on Wireless Communications, 10, 995-1005.
    [27] Liu, P., Nie, C., Korakis, T., Erkip, E., Panwar, S. S., Verde, F., & Scaglione, A. (2012). STiCMAC: a MAC protocol for robust space-time coding in cooperative wireless LANs. IEEE Transactions on Wireless Communications, 11, 1358-1369.
    [28] Dehghan, M., Ghaderi, M., & Goeckel, D. (2011). Minimum-energy cooperative routing in wireless networks with channel variations. IEEE Transactions on Wire-less Communications, 10, 3813-3823.
    [29] Sheng, Z., Leung, K. K., & Ding, Z. (2011). Cooperative wireless networks: from radio to network protocol designs. IEEE Communications Magazine, 49, 64-69.
    [30] Li, P., Shen, Q., Fang, Y., & Zhang, H. (2009). Power controlled network pro-tocols for multi-rate ad hoc networks. IEEE Transactions on Wireless Communi-cations, 8, 2142-2149. Broch, J., Johnson, D., & Mnltz, D., (1998).
    [31] Tsai, Y. C., & Su, S. L., (2014). An SINR-based Routing and MAC Design for QoS in Wireless Ad Hoc Networks. Published online in Wireless Networks, DOI: 10.1007/s11276-014-0840-9.

    無法下載圖示 校內:2017-08-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE