簡易檢索 / 詳目顯示

研究生: 陳志漢
Chen, Chih-Han
論文名稱: 氧化鋅奈米線於光電元件上之應用與研究
The application and research in optoelectronic device by using ZnO nanowire
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 100
中文關鍵詞: 氧化鋅奈米線光檢測器場發射藍光二極體白光二極體
外文關鍵詞: ZnO nanowires, photodetector, field emission, blue light emitting diode, white light emitting diode
相關次數: 點閱:100下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要是利用氧化鋅奈米線做光電元件上的應用與研究,主要可以分成三大部分,分別是場發射元件,紫外光偵測器元件,發光二極體元件
    在場發射元件方面,透過不需要催化物的固-氣成長機制,在氧化鋅摻雜鎵/玻璃 基板上,成長出垂直的氧化鋅奈米線。每根奈米線長度約為5μm 而直徑大約50~250nm。透過X光繞射圖譜分析可以觀察出該氧化鋅奈米線在(002)方向有很小的半高寬,藉由此數據我們推論出該氧化鋅奈米線大部分沿著(002)方向成長,之後透過照射紫外光波段的光,增強該奈米線的場發射能力,成功的將臨界電場降到2.1V/μm,此時電流值達到l μA/cm2。
    在紫外光偵測器元件方面,透過固-氣成長機制,在p型氮化鎵基板上,成長出垂直的n-型氧化鋅奈米線並形成p-n 異直接面二極體,並利用該二極體成功完成紫外光偵測器,在p型氮化鎵基板上氧化鋅奈米線長度約為0.7~1μm,直徑約為80-100nm,在黑暗中,由電流對電壓曲線圖可以觀察到很明顯的整流二極體的曲線,且在量測電壓-5伏特且紫外光燈的照射下,電流相對於黑暗中則增加15倍。
    在發光二極體元件方面,則可分成藍光二極體,以及白光二極體。該發光二極體元件都是透過n-p-n異質接面二極體,首先將垂直的氧化鋅奈米線成長在p型氮化鎵的基板上,之後利用預先準備好的ITO玻璃,作為電極,將兩者結合,透過電流對電壓曲線可以觀察到兩個明顯的對稱整流二極體曲線,由此我們可以推測出已經成功完成兩個背對背相接異質接面的二極體,最後透過PL還有照片,可以明顯的觀察出該發光二極體發出藍光。
    至於白光發光二極體的部分,則透過成長摻雜鎵的氧化鋅奈米線而完成,利用固氣成長法配合鎵蒸氣成長摻雜鎵的氧化鋅奈米線,由於摻雜鎵的關係將會使原本的發光波長產生些微的位移,進而成功完成白光發光二極體的設計

    Vertical zinc oxide nanowires, used as electron emitters, were synthesized on ZnO: Ga/glass substrate by a vapor–liquid–solid process without a catalyst. The nanowires, 5μm long and 50~250nm in diameter, were grown with a preferred (002) orientation and a small XRD full-width at half-maximum intensity. Illumination of ZnO nanowires by UV improved their field emission attributes, reducing their turn-on electric field to 2.1V/μm at a current density of l μA/cm2. This phenomenon is attributed to the generation of a large number of hole-electron pairs by UV illumination.
    Vertical well-aligned zinc oxide (ZnO) nanowires were grown on p-GaN/ sapphire to produce a p-n heterojunction using the vapor-solid (VS) process. A p-n heterojunction in an ultraviolet photodetector was successfully demonstrated. The length of ZnO nanowires on the p-GaN epitaxial was in the range 0.7~1μm and the diameter was in the range 80-100nm. The current-voltage curve of the heterojunction demonstrates obvious rectifying diode behavior in a dark environment. Under UV light (365nm), the current was almost 15 times that in the dark current at -5V. Continuous measurements indicate the reproducibility and stability of this heterojunction photodetector.
    The investigation explores the fabrication and characteristics of ZnO nanowires/p-GaN/ZnO nanowires heterojunction LED. Vertically aligned ZnO NWs arrays were grown on the p-GaN substrate. The n-p-n heterojunction LED was successfully fabricated by combining ITO/glass substrate with the prepared ZnO nanowires/p-GaN substrate. The symmetrical rectifying behavior demonstrates that the heterostructure herein was formed with two p-n junction diodes and connected back to back. The room-temperature electroluminescent (EL) emission peak at 415nm was attributed to the band offset at the interface between n-ZnO and p-GaN and defect-related emission from ZnO and GaN. Finally, the photograph indicated the LED clearly emitted blue light.
    The investigation examines the fabrication and characteristics of a white light emitting diode (LED). A white light LED was fabricated by doping Ga into ZnO nanowires (ZnO: Ga NWs) on p-GaN substrate. Vertically aligned ZnO: Ga NWs were grown by thermal chemical vapor deposition to 0.7 μm in length and 50~300 nm in diameter. The white light LED was successfully fabricated by forming an n-p-n heterojunction on ITO/glass substrate. The electroluminescence (EL) emission peak is at 500 nm and the broad band FWHM intensity is at 200nm. Finally, photographs show high luminance a white light from the ZnO: Ga LED.

    Abstract(Chinese)..........................................I Abstract.................................................III Acknowledgements...........................................VContents..................................................VI List of Figures ..........................................IX List of Tables..........................................XIII Chapter 1.Introduction.....................................1 1.1Background of Semiconductor optoelectronic device.......1 1.1.1Background of Field emission..........................1 1.1.2Background of photodector.............................2 1.2Background of Semiconductor LED.........................3 1.2.1GaN based LED.........................................5 1.2.2ZnO based LED.........................................6 1.3Organization of dissertation............................7 Chapter 2Background.......................................14 2-2Theory of field emission...............................14 2.2.The theory of photodetector...........................17 2.3.The theory of light emitting diode....................19 2.4.The growth method of ZnO nanowires....................20 2.4.1.Vapor-Liquid-Solid (VLS) method.....................21 2.4.2.Self-catalyzed VLS process..........................22 2.4.3.Chemical Vapor Deposition method....................23 2.4.4.Template-assisted growth method.....................24 2.4.5.Solution-base synthesis method......................25 2.4.6.Catalyst-driven molecular-beam-epitaxy method.......25 2.4.7.Metalorganic Chemical Vapor Deposition method.......26 Chapter 3Experimental Equipment...........................33 3.1Growth instruments.....................................33 3.1.1RF Sputtering System.................................33 3.1.2Thermal Chemical vapor Deposition system.............33 3.2Analysis instruments...................................34 3.2.1Field-Emission Scanning Electron Microscopy (FE-SEM).34 3.2.2Energy dispersive X-ray analyses (EDX)...............35 3.2.3High resolution X-ray diffractometer (XRD)...........36 3.2.4Photoluminescence Spectrum system....................36 3.2.5Electroluminescence Spectrum system..................37 3.2.6Current-voltage (I-V) measurement system.............37 Chapter 4Enhanced field emission of well-aligned ZnO nanowire arrays illuminated by UV.........................44 4.1Introduction of field emission by using ZnO NWs........44 4.2The growth and analysis of ZnO nanowire................45 4.3The result and discussion of field emission measurement46 4.4Summary................................................49 Chapter 5Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction.............................57 5.1Introduction of UV photodetector.......................57 5.2Experiment about UV detector by using ZnO NWs..........58 5.3The results and discussion in ZnO UV detector..........60 5.4Summary................................................63 Chapter 6Electroluminescence from n-ZnO nanowires/p-GaN heterostructure Light-Emitting Diodes.....................70 6.1Introduction of LED by using ZnO nanowire..............70 6.2Experiment of LED by using ZnO nanowire................71 6.3The result and discussion of blue LED..................73 6.4summary................................................75 Chanpter 7 Fabrication of a white light emitting diode by doping gallium into ZnO nanowire on p-GaN substrate.......83 7-1 Introduction of White LED by using ZnO NWs............83 7-2 Experiment of white LED by ZnO NWs....................84 7-3 The result and discussion of white LED by ZnO NWs.....86 7-4 Summary...............................................89 Chapter 8 Conclusion and future work......................97 個人著作PUBLICATION LIST..................................100

    Chapter 1
    [1] S. Nakamura; T. Mukai; M. Senoh., Appl. Phys. Lett.1994, 64, 1687.
    [2] S. Nakamura; T. Mukai; M. Senoh., Jpn. J. Appl. Phys. Part 2-Letters 1991, 30, L1998.
    [3] S. Nakamura; M. Senoh; S. Nagahama; N. Iwasa; T. Yamada; T. Matsushita; H. Kiyoku; Y. Sugimoto. Jpn. J. Appl. Phys. Part 2-Letters 1996, 35, L74.
    [4] L. Gangloff; E. Minoux; K. B. K. Teo; P. Vincent; V. T. Semet; V. T. Binh; M. H. Yang; I. Y. Y. Bu; R. G. Lacerda; G. Pirio; J. P. Schnell; D. Pribat; D. G. Hasko; G. A. J. Amaratunga; W. I. Milne; P. Legagneux. Nano Letters 2004, 4, 1575.
    [5] F. S. Baker; J. Williams; A. R. Osborn. Nature 1972, 239, 96.
    [6] Q. Zhao; J. Xu; X. Y. Xu; Z. Wang; D. P. Yu. Appl. Phys. Lett.2004, 85, 5331.
    [7] C. J. Lee; T. J. Lee; S. C. Lyu; Y. Zhang; H. Ruh; H. J. Lee. Appl. Phys. Lett.2002, 81, 3648.
    [8] H. B. Jia; Y. Zhang; X. H. Chen; J. Shu; X. H. Luo; Z. S. Zhang; D. P. Yu. Appl. Phys. Lett.2003, 82, 4146.
    [9] J. Zhou; S. Z. Deng; N. S. Xu; J. Chen; J. C. She. Appl. Phys. Lett.2003, 83, 2653.
    [10] W. Z. Wang; B. Q. Zeng; J. Yang; B. Poudel; J. Y. Huang; M. J. Naughton; Z. F. Ren. Adv. Mater. 2006, 18, 3275.
    [11] S. H. Jo; J. Y. Lao; Z. F. Ren; R. A. Farrer; T. Baldacchini; J. T. Fourkas. Appl. Phys. Lett.2003, 83, 4821.
    [12] J.P. Liu, S.S. Wang, Z.Q. Bian, M.N. Shan, C.H. Huang, Chem. Phys. Lett. 2009, 470, 103.
    [13] X.D. Wang, J.H. Song, J. Liu, Z.L. Wang, Science 2007, 316, 102.
    [14] K. Qu, C. Li, K. Hou, X. Yang, J. Zhang, W. Lei, X. Zhang, B. Wang, X. W. Sun, Appl. Phys. Lett. 2008, 93, 253501.
    [15] Y. S. Min, E. J. Bae, J. B. Park, U. J. Kim, W. Park, J. Song, C. S. Hwang, N. Park, Appl. Phys. Lett. 2007, 90, 263104.
    [16] S. Rackauskas, A. G. Nasibulin, H. Jiang, Y. Tian, G. Statkute, S. D. Shandakov, H. Lipsanen, E. I. Kauppinen, Appl. Phys. Lett. 2009, 95, 183114.
    [17] J. Bae, J. I. Hong, W. H. Han, Y. J. Choi, R. L. Snyder, Chem. Phys. Lett. 2009, 475, 260.
    [18] C. J. Park, D. K. Choi, J. Yoo, G. C. Yi, C. J. Lee, Appl. Phys. Lett. 2007, 90, 083107.
    [19] S. J. Chang; T. K. Ko; J. K. Sheu; S. C. Shei; W. C. Lai; Y. Z. Chiou; Y. C. Lin; C. S. Chang; W. S. Chen; C. F., Sens. Actuator A-Phys. 2007, 135, 502.
    [20] G. De Cesare, D. Caputo, A. Nascetti, C. Guiducci, B. Ricco, Appl. Phys. Lett. 2006, 88, 083904.
    [21] J.P. Liu, S.S. Wang, Z.Q. Bian, M.N. Shan, C.H. Huang, Chem. Phys. Lett. 2009, 470, 103.
    [22] T. H. Chou; Y. K. Fang; Y. T. Chiang; C. I. Lin; C. Y. Yang. Sens. Actuator A-Phys. 2008, 147, 60.
    [23] X. T. Zhou; H. L. Lai; H. Y. Peng; F. C. K. Au; L. S. Liao; N. Wang; I. Bello; C. S. Lee; S. T. Lee., Chem. Phys. Lett. 2000, 318, 58.
    [24] Y.Z. Chiou, Semicond. Sci. Technol. 2008, 23.
    [25] S. Han; W. Jin; D. H. Zhang; T. Tang; C. Li; X. L. Liu; Z. Q. Liu; B. Lei; C. W. Zhou., Chem. Phys. Lett. 2004, 389, 176.
    [26] G. Ariyawansa; M. B. M. Rinzan; M. Alevli; M. Strassburg; N. Dietz; A. G. U. Perera; S. G. Matsik; A. Asghar; I. T. Ferguson; H. Luo; A. Bezinger; H. C. Liu., Appl. Phys. Lett. 2006, 89, 091113.
    [27] W. J. Mai; P. X. Gao; C. S. Lao; Z. L. Wang; A. K. Sood; D. L. Polla; M. B. Soprano, Chem. Phys. Lett. 2008, 460, 253.
    [28] L. Peng; J. L. Zhai; D. J. Wang; P. Wang; Y. Zhang; S. Pang; T. F. Xie. Chem. Phys. Lett. 2008, 456, 231.
    [29] J. W. Sun; Y. M. Lu; Y. C. Liu; D. Z. Shen; Z. Z. Zhang; B. H. Li; J. Y. Zhang; B. Yao; D. X. Zhao; X. W. Fan., J. Phys. D: Appl. Phys. 2008, 41, 155103.
    [30] Y.J. Zeng et al., Chem. Phys. Lett. 2007, 441, 115.
    [31] J. H. He; S. T. Ho; T. B. Wu; L. J. Chen; Z. L. Wang. Chem. Phys. Lett. 2007, 435, 119.
    [32] L. Yu; X. F. Yu; Y. F. Qiu; Y. J. Chen; S. H. Yang. Chem. Phys. Lett. 2008, 465, 272.
    [33] F. Zhuge, L.P. Zhu, Z.Z. Ye, J.G. Lu, H.P. He, B.H. Zhao, Chem. Phys. Lett. 2007, 437, 203.
    [34] D. C. Look, Mater. Sci. Eng. B 2001,80, 383.
    [35] W.I. Park, G.C. Yi, Adv. Mater. 2004, 16, 87.
    [36] Z Z. Guo; D. X. Zhao; Y. C. Liu; D. Z. Shen; J. Y. Zhang; B. H. Li. Appl. Phys. Lett. 2008, 93, 163501.
    [37] H. Zhu et al., J. Phys. Chem. C 2008, 112, 20546.
    [38] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 1986, 48, 353.
    [39] H. Amano, M. Kito, K. Hiramatsu, N. Sawaki, and I. Akasaki, Jpn. J. Appl. Phys. 1989, 28, L2112
    [40]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, J. Vac. Sci. Technol. B, 2004, 22, 932.
    [41]Z. L. Wang, Appl. Phys. A, 2007, 88, 7.
    [42]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Pro. Mater. Sci., 2005, 50, 293.
    [43]Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, Mater. Sci. Eng. R, 2004, 47, 1.
    [44]A. Ashrafi and C. Jagadish, J. Appl. Phys. 2007, 102, 071101.
    [45]J. Zhou, N. Xu, Z. L. Wang, Adv. Mater., 2006, 18, 2432.
    [46]A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, W. Huang, Appl. Phys. Lett., 2006, 89, 123902.
    [47]L. Nie, L. Gao, P. Feng, J. Zhang, X. Fu, Y. Liu, X. Yan, and T. Wang, Small, 2, 621.
    [48]A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nature Mater., 2005, 4, 42.
    [49]M. C. Jeong, B. Y. Oh, M. H. Ham, S. W. Lee, and J. M. Myoung, Small, 2007, 3, 568.
    [50]J. Bao, M. A. Zimmer, F. Capasso, X. Wang, and Z. F. Ren, Nano Lett., 2006, 6, 1719.
    [51]R. Könenkamp, R. C. Word, and C. Schlegel, Appl. Phys. Lett., 2004, 85, 6004.
    [52] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, J. Vac. Sci. Technol. B 2004, 22, 932.
    [53] H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 1969, 15, 327.
    Chapter 2
    [1] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, Science, 269, 1550, 1995.
    [2] L. A. Chernozatonskii, Y. V. Gulyaev, Z. J. Kosakovskaja, N. I. Sinitsyn, G. V. Torgashov, Y. F. Zakharchenko, E. A. Fedorov, and V. P. Val'chuk, Chem. Phys. Lett. vol. 233, 63, 1995.
    [3] W. A. Deheer, A. Chatelain, and D. Ugarte, Science, 270, 1179, 1995.
    [4] R. H. Fowler and L. W. Nordheim, Proc. R. Soc., 119, 173, 1928.
    [5] X. Bai, E.G. Wang, P. Gao, Z.L. Wang, Nano Lett. 3, 1147, 2003
    [6] V. Filip, D. Nicolaescu, M. Tanemura, and F. Okuyama, Ultramicroscopy, 89, 39-49, 2001.
    [7] G. P. Beukcma, Physica, 61, 259, 1971.
    [8] R. E. Burgess and H. Krocmer, Phys. Rev. A, 90, 515, 1953.
    [9] C. Lea, Appl. Phys. Lett., 71, 1430, 1997.
    [10] C. Johnson, J.Y. Lin, H.X. Jiang, M.Asif Khan, C.J. Sun, Appl. Phys. Lett. 68, 1808, 1996
    [11] J.Z. Li, J.Y. Lin, H.X. Jiang, Salvador, A. Botchkarev, H. Morkoc, Appl. Phys. Lett. 69, 1474, 1996
    [12] G. Beadie, W.S. Rabinovich, A.E. Wickenden, D.D. Koleske, S.C. Binari, J.A. Freitas Jr., Appl. Phys. Lett. 71, 1092, 1997
    [13] C.H. Qiu, J.I. Pankove, Appl. Phys. Lett. 70, 1983, 1997
    [14] M.T. Hirsch, A. Wolk, W. Walukiewicz, E.E. Haller, Appl. Phys. Lett. 71, 1098, 1997.
    [15] H.M. Chen, Y.F. Chen, M.C. Lee, M.S. Feng, J. Appl. Phys. 82, 899, 1997
    [16] J.Z. Li, J.Y. Lin, H.X. Jiang, M. Asif Khan, Q. Chen, J. Appl. Phys. 82, 1227, 1997
    [17] J.Z. Li, J.Y. Lin, H.X. Jiang, M. Asif Khan, Q. Chen, J. Vac. Sci. Technol. B 15, 1117, 1997
    [18] X.Z. Dang, C.D. Wang, E.T. Yu, K.S. Boutros, J.M. Redwing, Appl. Phys. Lett. 72, 2745, 1998
    [19] J.Y. Lin, A. Dissanayake, G. Brown, H.X. Jiang, Phys. Rev. B 42, 5855, 1990
    [20] A. Dissanayake, M. Elahi, H.X. Jiang, J.Y. Lin, Phys. Rev. B 45, 13996, 1992
    [21] P. Bhattacharya, "Semiconductor Optoelectronic Devices," Prentice-Hall, Inc.,Upper Saddle River, New Jersey (1997).
    [22] http://hometown.aol.com/nanovation/ZnO.html
    [23] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater., 13, 113, 2000.
    [24] J. Wu, and S. Liu, J. Phys. Chem. B., 106, 9546, 2002.
    [25] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, Appl. Phys. Lett., 76, 2011, 2000.
    [26] L. Vayssieres, Adv. Mater, 15, 464, 2003.
    [27] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, and P. H. Fleming, Appl. Phys. Lett., 81, 3046, 2002.
    [28] W. I. Park, Y. H. Jun, S. W. Jung, and G.-C. Yi, Appl. Phys. Lett., 82, 964, 2003.
    [29] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanaetoglu, and Y. Lu, IEEE T. Nanotech., 2, 50, 2003.
    [30] Y. Wu, P. Yang, J. Am.Chem. Soc., 123, 3165, 2001.
    [31] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 13, 113, 2001.
    [32] J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, Chem. Mater. 14, 1216, 2002.
    [33] B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81, ,757, 2002.
    [34] J. J. Wu, S. C. Liu, J Phys Chem. B, 106, 9546, 2002.
    [35] S. C. and J. J. Wu, J. Mater. Chem., 12, 3125, 2002.
    [36] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, Appl. Phys. Lett. 76, 2011, 2000.
    [37] T. N. Xu, H. Z. Wu, Y. F. Lao, D. J. Qiu, N. B. Chen, N. Dai, Chinese phys. Letters, 21, 1327, 2004.
    [38] L. Vayssieres, Adv. Mater., 15, 464, 2003.
    [39] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, and P. H. Fleming, Appl. Phys. Lett., 81, 3046, 2002.
    [40] W. I. Park, S. J. An, J. L. Yang, G. C. Yi, J. Phys. Chem. B, 108, 15457, 2004.
    [41] W.I. PARK, Y. H. Jun, S. W. Jung, G. C. Yi, Appl. Phys. Lett. 80, 4232, 2002.
    [42] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanaetoglu, and Y. Lu, IEEE Trans. Nanotechnol., 2, 50, 2003.
    Chapter 3
    [1] http://www.jeol.com/sem/semprods/jsm6500f.html
    [2] http://www.nano.nsysu.edu.tw/nano/equipment/HRXRD.html
    [3] D. Braun G. L. J. A. Rikken, E. G. J. Staring, and R. Demandt, Appl. Phys, Lett., 65, 219, (1994).
    [4] D. Braun G. L. J. A. Rikken, E. G. J. Staring, and R. Demandt, Appl. Phys, Lett., 65, 219, (1994).
    [5] 材料分析與檢測實驗, 莊東漢,五南書局,2006
    Chapter 4
    [1]C.A. Spindt, J. Appl. Phys. 39 (1968) 3504.
    [2]W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim, Appl. Phys. Lett. 75 (1999) 3129.
    [3]G. M. Fuge, T. M. S. Holmes, M. N. R. Ashfold, Chem. Phys. Lett. 479 (2009) 125.
    [4]J. H. Zeng, B. B. Jin, Y. F. Wang, Chem. Phys. Lett. 472 (2009) 90.
    [5]M. Ahmad, C. Pan, J. Iqbal, L. Gan, J. Zhu, Chem. Phys. Lett. 480 (2009) 105.
    [6]W. Li, M. Gao, X. Zhang, D. Liu, L. M. Peng, S. Xie, Appl. Phys. Lett. 95 (2009) 173109.
    [7]P. X. Gao, J. H. Song, J. Liu, Z. L. Wang, Adv. Mater. 19 (2007) 67.
    [8]J.P. Liu, S.S. Wang, Z.Q. Bian, M.N. Shan, C.H. Huang, Chem. Phys. Lett. 470 (2009) 103.
    [9]X.D. Wang, J.H. Song, J. Liu, Z.L. Wang, Science 316 (2007) 102.
    [10]K. Qu, C. Li, K. Hou, X. Yang, J. Zhang, W. Lei, X. Zhang, B. Wang, X. W. Sun, Appl. Phys. Lett. 93 (2008) 253501.
    [11]Y. S. Min, E. J. Bae, J. B. Park, U. J. Kim, W. Park, J. Song, C. S. Hwang, N. Park, Appl. Phys. Lett. 90 (2007) 263104.
    [12]S. Rackauskas, A. G. Nasibulin, H. Jiang, Y. Tian, G. Statkute, S. D. Shandakov, H. Lipsanen, E. I. Kauppinen, Appl. Phys. Lett. 95 (2009) 183114.
    [13]C. Li, K. Hou, X. Yang, K. Qu, W. Lei, X. Zhang, B. Wang, X. W. Sun, Appl. Phys. Lett. 93 (2008) 233508.
    [14]A. Janotti and C. G. Van De Walle, Nat. Mater. 6 (2007) 44.
    [15]J. Bae, J. I. Hong, W. H. Han, Y. J. Choi, R. L. Snyder, Chem. Phys. Lett. 475 (2009) 260.
    [16]C. J. Park, D. K. Choi, J. Yoo, G. C. Yi, C. J. Lee, Appl. Phys. Lett. 90 (2007) 083107.
    [17]T. J. Hsueh, C. L. Hsu, S. J. Chang,Y. R. Lin, S. P. Chang, Y. Z. Chiou, T. S. Lin, I. C. Chen, IEEE Trans. Nanotechnol. , 6, (2007) 6, 595.
    [18]R. H. Fowler, L. Nordheim, Proc. R. Soc. London, Ser. A 119 (1928) 173.
    [19]X. Bai, E. G. Wang, P. Gao, Z. L. Wang, Nano Lett. 3, (2003) 1147.
    [20]N. S. Ramgir, D. J. Late, A. B. Bhise, I. S. Mulla, M. A. More, D. S. Joag, V. K. Pillai, Nanotechnology 17, (2006) 2730.
    [21]J. B. You, X. W. Zhang, P. F. Cai, J. J. Dong, Y. Gao, Z. G. Yin, N. F. Chen, R. Z. Wang, H. Yan, Appl. Phys. Lett. 94 (2009) 262105.
    Chapter 5
    [1]S. J. Chang, T. K. Ko, J. K. Sheu, S. C. Shei, W. C. Lai, Y. Z. Chiou, Y. C. Lin, C. S. Chang, W. S. Chen, C. F. Shen, Sens. Actuator A-Phys., 135 (2007) 502-506.
    [2]G. De Cesare, D. Caputo, A Nascetti, C. Guiducci, and B. Ricco, Appl. Phys. Lett., 88 (2006), 083904.
    [3]J. P. Liu, S. S. Wang, Z. Q. Bian, M.N. Shan and C.H. Huang, Chem. Phys. Lett., 470 (2009), 103-106.
    [4]T. H. Chou; Y. K. Fang; Y. T. Chiang; C. I. Lin; C. Y. Yang. Sens. Actuator A-Phys. 147 (2008) 60-63.
    [5]X. T. Zhou, R. Q. Zhang, H. Y. Peng, N. G. Shang, N. Wang, I. Bello, C. S. Lee and S. T. Lee, Chem. Phys. Lett., 332 (2000), 215-218.
    [6]Y. Z. Chiou, Semicond. Sci. Technol. 23 (2008) 125007.
    [7]S. Han; W. Jin; D. H. Zhang; T. Tang; C. Li; X. L. Liu; Z. Q. Liu; B. Lei; C. W. Zhou. Chem. Phys. Lett., 389 (2004) 176–180.
    [8]G. Ariyawansa, M. B. M. Rinzan, M. Alevli, M. Strassburg, N. Dietz, A. G. U. Perera, S. G. Matsik, A. Asghar and I. T. Ferguson, H. Luo, A. Bezinger, and H. C. Liu, Appl. Phys. Lett. 89 (2006), 091113.
    [9]W. J. Mai; P. X. Gao; C. S. Lao; Z. L. Wang; A. K. Sood; D. L. Polla; M. B. Soprano., Chem. Phys. Lett., 460 (2008) 253–256.
    [10]L. Peng; J. L. Zhai; D. J. Wang; P. Wang; Y. Zhang; S. Pang; T. F. Xie. Chem. Phys. Lett., 456 (2008), 231-235.
    [11]J. W. Sun, Y. M. Lu, Y. C. Liu, D. Z. Shen, Z. Z. Zhang, B. H. Li,, J. Y. Zhang, B. Yao, D. X. Zhao and X. W. Fan, J. Phys. D: Appl. Phys. 41 (2008) 155103.
    [12]Y.J. Zeng, Z.Z. Ye, Y.F. Lu, J.G. Lu, W.Z. Xu, L.P. Zhu, B.H. Zhao, Y. Che, Chem. Phys. Lett., 441 (2007) 115–118.
    [13]J. H. He; S. T. Ho; T. B. Wu; L. J. Chen; Z. L. Wang., Chem. Phys. Lett., 435 (2007) 119–122.
    [14]L. Yu; X. F. Yu; Y. F. Qiu; Y. J. Chen; S. H. Yang., Chem. Phys. Lett., 465 (2008) 272–274.
    [15]F. Zhuge, L.P. Zhu, Z.Z. Ye, J.G. Lu, H.P. He, B.H. Zhao, Chem. Phys. Lett., 437 (2007) 203–206.
    [16]W. I. Park; G. C.Yi, Adv. Mater. (2004), 16, 87.
    [17]Z. Guo; D. X. Zhao; Y. C. Liu; D. Z. Shen; J. Y. Zhang; B. H. Li. Appl. Phys. Lett. 93, 163501 (2008).
    [18]H. Zhu, C. X. Shan, B. Yao, B. Yao, B.H. Li, J. Y. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, J. Phys. Chem. C., 112, (2008), 20546-20548.
    [19]L. Luo; Y. F. Zhang; S. S. Mao; L. W. Lin. Sens. Actuator A-Phys., 127 (2006) 201-206.
    Chapter 6
    [1] S. J. An, J. H. Chae, G. C. Yi, and G. H. Park, Appl. Phys. Lett. 92, 121108 (2008).
    [2] C. G. Van de Walle and J. Neugebauer, Nature 423, 626 (2003)
    [3] S. Chu, M. Olmedo, Z. Yang, J. Kong, and J. Liu, Appl. Phys. Lett. 93, 181106 (2008)
    [4] Y. Yang, X. W. Sun, B. K. Tay, G. F. You, S. T. Tan, and K. L. Teo Appl. Phys. Lett. 93, 253107 (2008)
    [5] W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, and H. P. He Appl. Phys. Lett. 88, 173506 (2006)
    [6] Y. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukickev, and B. M. Ataev, Appl. Phys. Lett. 83, 2943 (2003).
    [7] D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang, J. Y. Oh, J. H. Yang, and S. J. Park, Appl. Phys. Lett. 86, 222101 (2005).
    [8] D. C. Oh, T. Suzuki, J. J. Kim, H. Makino, T. Hanada, T. Yao, and H. J. Ko, Appl. Phys. Lett. 87, 162104 (2005).
    [9] D. J. Rogers, F. H. Teherani, A. Yasan, K. Minder, P. Kung, and M. Razeghi, Appl. Phys. Lett. 88, 141918 (2006).
    [10] M.C. Jeong, B.Y. Oh, M.H. Ham and J.M. Myoung, Appl. Phys. Lett. 88, 202105 (2006)
    [11] C. Bayram, F. Hosseini Teherani, D. J. Rogers, and M. Razeghi1 , Appl. Phys. Lett 93, 081111 (2008)
    [12] Ricky W. Chuang, Rong-Xun Wu, Li-Wen Lai, and Ching-Ting Lee Appl. Phys. Lett. 91, 231113 (2007)
    [13] X. Wang, C.J. Summers, and Z.L. Wang, Nano Lett. 4, 423 (2004)
    [14] M.H. Huang, S. Mao, H. Feick, H. Yan, Y.Wu, H. Kind, E.Weber, R. Russo, and P. Yang, Science 292, 1897 (2001)
    [15] J.K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. J. Kuo, and C. J. Tun, Appl. Phys. Lett. 90, 263511 (2007).
    [16] W.I. Park, and G.C. Yi, Adv. Mater. 16, 1, 87 (2004)
    [17] J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. M. Mackie, and H. Shen, Appl. Phys. Lett. 90, 203515 (2007).
    [18] Q.H. Li, Q. Wan, Y.X. Liang, and T.H. Wang, Appl. Phys. Lett. 84, 4556 (2004).
    [19] S Boissard, and M Fontoynont, Color Res. Appl. 34, 4, 310-320 (2009)
    [20] J.Y. Lee, J.H. Lee, H.S. Kim, C.H. Lee, H.S. Ahn, H.K. Cho, Y.Y. Kim, B.H. Kong, and H.S. Lee, Thin Solid Films. 517, 5157-5160 (2009)
    Chapter 7
    [1]T. Pauporte, E. Jouanno, F. Pelle, B. Viana, and P. Aschehoug, J. Phys. Chem. C 2009, 113, 10422–10431
    [2]S. D. Lee, Y. S. Kim, M. S. Yi, J. Y. Choi, and S. W. Kim, J. Phys. Chem. C 2009, 113, 8954–8958
    [3]J. J. Uhlrich, R. Franking, R. J. Hamers, and T. F. Kuech, J. Phys. Chem. C 2009, 113, 21147–21154
    [4]N. Reuge, R. Bacsa, P. Serp, and B. Caussat, J. Phys. Chem. C 2009, 113, 19845–19852
    [5]X. Fang, J. Li, D. Zhao, D. Shen, B. Li, and X. Wang, J. Phys. Chem. C 2009, 113, 21208–21212
    [6]K. Gao, W. Zhang, J. Sun, N. Xu, Z. F. Ying, Q. Li, J. Gan, and J. D. Wu, J. Phys. Chem. C 2009, 113, 19139–19144
    [7]H. H. Guo; Z. H. Lin; Z. F. Feng; L. L. Lin, J. Z. Zhou, J. Phys. Chem. C 2009, 113, 12546–12550
    [8]K.K. Kim, S. Niki, J.Y. Oh, J.O. Song, T.Y. Seong, S.J. Park, et al., J. Appl. Phys. 2005,97,066103.
    [9]H.J. Ko, Y.F. Chen, S.K. Hong, H. Wenisch, T. Yao, D.C. Look, Appl. Phys. Lett. 2000, 77, 3761–3.
    [10]S.Y. Bae, C.W. Na, J.H. Kang, J. Park, J. Phys. Chem. B., 2005,109,2526–31.
    [11]H. C. Chen, M. J. Chen, M. K. Wu, W. C. Li, H. L. Tsai, J. R. Yang, H. Kuan , and M. Shiojiri, IEEE J. Quantum Electron., 2010, 46.
    [12]P. H. Chen, W. C. Lai, Li-Chi Peng, C. H. Kuo, Chi-Li Yeh, J. K. Sheu, and C. J. Tun, IEEE Trans. Electron Devices, 2010, 57.
    [13]C. G. Van de Walle and J. Neugebauer, Nature 2003, 423 ,626
    [14]C. Li. Hsu, Y. R. Lin, S. J. Chang, T. H. Lu, T. S. Lin, S. Y. Tsai, and I. C. Chen, J. Electrochem. Soc., 2006, 153, 4, G333-G336
    [15]A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurisic, W. K. Chan, S. Gwo; H. L. Tam, K. W. Cheah, P. W. K. Fong; H. F. Lui, C. Surya,, Nanotechnology 2009, 20 445201
    [16]H. Huang, G. Fang, X. Mo, H. Long, L. Yuan, B. Dong, X. Meng, and X. Zhao, IEEE Electron Device Lett., 2009, 30, 1063.
    [17]M. C. Newton, S. J. Leake, R. Harder and I. K. Robinson, Nat. Mater., 2010, 9, 120.
    [18]S. Y. Lee, Y. W. Song, K. A. Jeon, J. Cryst. Growth, 2008 310 4477
    [19]J.K. Sheu, M. L. Lee, Y. S. Lu, and K. W. Shu, IEEE J. Quantum Electron., 2008, 44, 1211.
    [20]Y. I. Alivov, N. J. E. Van, D C Cook, M. V. Chukichev and B. M. Ataev Appl. Phys. Lett. 2003 83 2943
    [21]D. C. Kim, W. S. Han, B. H. Kong, H. K. Cho, C. H. Hong, Physica B 2007 401 386.

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE