簡易檢索 / 詳目顯示

研究生: 林紀甫
lin, ji-fu
論文名稱: 單細胞動作電位量測晶片之研製
Biochip fabrication of action potential measurement for single cells
指導教授: 羅錦興
Luo, Ching-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 71
中文關鍵詞: 微影應耦合電漿離子蝕刻微機電系統膜片箝制壓箝制
外文關鍵詞: Voltage Clamp, Patch clamp, Soft lithogra, MEMS
相關次數: 點閱:93下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   膜片箝制(Patch Clamp)技術,是電生理學中研究離子通道機制最成熟完備的一項工具,傳統膜片箝制方式是使用玻璃吸管(pipette)移動到要紀錄的細胞上。此方式可得到正確且精準的資訊,但卻需要純熟的操作技術,且相當耗費時間導致只能得到少量的紀錄資訊。電壓箝制(Voltage clamp)則是另外一種量測離子通道的方式,給予一定程度的電壓來量測細胞膜間的離子電流進出,藉此可量測細胞的動作電位(action potential)。

      本論文提出以軟微影(Soft lithography)與蝕刻技術,在矽晶片上製作細胞平台與孔洞,以代替傳統膜片箝制的玻璃吸管來進行電壓箝制實驗,至今已成功地以矽晶片細胞平台黏取細胞和以ICP(感應耦合電漿離子蝕刻)蝕刻出矽晶片的微小孔洞。本研究驗證了此製程的可行性,期望可藉由此晶片量測細胞的離子通道,能自動化且即時地得知細胞的生理現象,且節省人力與時間,並提高紀錄的資訊產量。

      Patch clamp is a well-developed lelectrophysiological recording technique used to study ion channel function and regulation. The conventional method of performing patch clamp technique employs a glass micropipette onto the cell by manual manipulation. Despite this technique is extremely sensitive and information-rich, but requires a highly-skilled operator and is limited in throughput. Voltage clamp that determine the behavior of the ion channel conductances responsible for the generation of the action potential is the another method to record the flow of ionic current across the cell membrance. The method is held a constant membrane potential while the ionic current flowing through the membrane is measured.

      The thesis presents cell-platforms and etcing pores on silicon by using soft lithography and etching technique insteading of conventional glass micropipette recording method. we successfully demonstrated practicability of the process by the cells adhered on the platform and the etching pores on the silicon chip by using ICP. The less laborious manipulation、time saving and high sampling throughput will be expected .In the future, we can automatically real time controlled and changed in response to the cell’s physiologic characteristics measured by ionic channel activities.

    中文摘要……………………………………………………………………I 英文摘要……………………………………………………………………Ⅱ 誌謝…………………………………………………………………………Ⅲ 目錄…………………………………………………………………………Ⅴ 表目錄………………………………………………………………………Ⅷ 圖目錄………………………………………………………………………Ⅸ 第一章 緒論…………………………………………………………………1 1-1前言………………………………………………………………………1 1-2微機電系統簡介…………………………………………………………1 1-3細胞動作電位簡介………………………………………………………2 1-4研究動機…………………………………………………………………3 1-5文獻回顧…………………………………………………………………4 1-6論文架構…………………………………………………………………9 第二章 電壓箝制技術與生物微機電的結合……………………………10 2-1離子通道與膜片箝制介紹………………………………………………10 2-1-1離子通道介紹…………………………………………………………10 2-1-2細胞膜的運輸…………………………………………………………13 2-1-3膜片箝制技術量測離子通道…………………………………………15 2-1-4電壓箝制 (Voltage Clamp)…………………………………………17 2-2 利用微機電技術取代傳統膜片箝制…………………………………………19 2-2-1高通量篩選(HTS) 藥物發展科技公司………………………………………20 2-2-1-1 AVIVA Biosciences Corp Axon Instruments,Inc……………………20 2-2-1-2 Cytocentrics CCS(Reutlingen ,Germany)……………………………22 2-2-1-3 Flyion GmbH (Tubingen , Germany)……………………………………24 2-2-1-4 Ionworks HT –Molecular Devices corp.(Sunnyvale ,USA)………25 2-2-1-5 Sophion Biosciences(Ballerup,Demark)………………………………26 第三章 膜片箝制晶片之製作………………………………………………30 3-1 光罩設計與製作…………………………………………………………30 3-2 前製程技術………………………………………………………………31 3-2-1 清潔(Clean)……………………………………………………………31 3-2-2 氧化(Oxidation)………………………………………………………34 3-2-3 微影( Photolithography)……………………………………………35 3-3軟微影(Soft lithography)………………………………………………39 3-3-1 軟微影簡介………………………………………………………………39 3-3-2 基板製作…………………………………………………………………39 3-3-3 基板表面改質……………………………………………………………43 3-4 濕式蝕刻 (TMAH蝕刻液)…………………………………………………46 3-4-1 濕式蝕刻原理……………………………………………………………46 3-4-2 濕蝕刻製程………………………………………………………………46 3-5 乾式蝕刻(感應耦合電漿離子蝕刻,ICP)…………………………………47 3-5-1 電漿簡介…………………………………………………………………48 3-5-2 電漿蝕刻原理……………………………………………………………50 3-5-3 乾蝕刻製程………………………………………………………………52 第四章 結果與討論……………………………………………………………55 4-1軟微影………………………………………………………………………55 4-2 TMAH濕式蝕刻……………………………………………………………58 4-3 ICP乾式蝕刻………………………………………………………………61 第五章 結論與未來展望………………………………………………………67 5-1結論…………………………………………………………………………67 5-2未來工作……………………………………………………………………67 參考文獻…………………………………………………………………………69 自述…………………………………………………………………………… 71

    [1] R. Feynman, “There's Plenty of Room at the Bottom,” Journal of
    Microelectromechanical Systems, Vol. 1, pp. 60-66, 1992.
    [2] 莊惠怡,“簡明圖解生理學,”合記出版, 1998
    [3] A. Brueggemann, M. George, M. Klau, M. Beckler, J. Steindl, J. C. Behrends
    and N. Fertig, “Ion Channel Drug Discovery and Research: The Automated
    Nano-Patch-Clamp Technology,” Current Drug Discovery Technologies, Vol. 1,
    pp. 91-96, 2004.
    [4] 吳勝男, ”開啟細胞電生理的新紀元──膜片箝制術,” 《科學月刊》 , 1991.
    [5] 嚴震東, ”探索神經系統之鑰──電生理與神經科學,” 《科學月刊》 , 1990.
    [6] B. Sakmann, E. Neher, “Single Channel Recording, Plenum Press,” 1995.
    [7] http://www.sophion.dk/
    [8] N. Fertig, R. H. Blick, J. C. Behrends, ”Whole cell patch clamp recording
    performed on a plannar galss chip,” Biophysical journal, Vol. 82, pp.
    3056-3062, 2002.
    [9] K. G.. Klemic, J. F. Klemic, M. A. Reed, F. J. Sigworth, “Micromolded PDMS
    planar electrode allows patch clamp electrical recordings from cells,”
    Biosensors and Bioelectronics, Vol. 17, pp. 597–604, 2002.
    [10] R. Pantoja, J. M. Nagarah, D. M. Starace, N. A. Melosh, R. Blunck, F.
    Bezanilla, J. R. Heath, “Silicon chip-based patch-clamp electrodes
    integrated with PDMS microfluidics,” Biosensors and Bioelectronics, Vol. 20,
    pp. 509-517, 2004.
    [11] T. Lehnert, R. Netzer, ”Realization of hollow SiO2 micronozzles for
    electrical measurements on living cell,” Apply physics letters, vol. 81,
    2002.
    [12] M. Tanabe, J. Makinodan, ”Development of micro channel array with detecting
    electrodes for electrophysiological biomedical sensor,” Micro Electro
    Mechanical Systems, pp. 407-410, 2003.
    [13] S. Pandey, R. Mehrotra, S. Wykosky, M. H. White,”Characterization of a MEMS
    BioChip for planar patch-clamp recording,” Solid-State Electronics, Vol.
    48, pp. 2061-2066, 2004.
    [14] J. Seo, C. Ionescu-Zanetti, J. Diamond, R. Lal, ”Integrated multiple
    patch-clamp array chip via lateral cell trapping junctions,” Applied
    physics letters, Vol. 84, 2004.
    [15] W. K. Purves, D. Sadava, G.. H. Orians, H. C. Heller. “Life: The Science of
    Biology,” Sinauer Associates and WH Freeman, 1994
    [16]http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/CellMembranes.html
    [17]劉華茂編譯, ”蓋氏生理學,” 杏文出版,1987
    [18] O. P. Hamill, A. Marty, E. Neher, B. Sakmann, “ Improved patch clamp
    techniques for high resolution current recording from cells and cell-free
    membrane patches,” Pflugers Arch. Vol. 391, pp.85-100, 1981.
    [19] J. Denyer, J. Worleyc, B. Coxb, G. Allenbya, M. Banksa, “HTS approaches to
    voltage-gated ion channel drug discovery,” Drug Discovery Today, Vol. 3,
    pp. 323-332, 1998.
    [20] The Axon Guide for Electrophysiology & Biophysics Laboratory
    Techniques, Axon Instruments, www.axon.com.
    [21] http://www.cytocentrics.com/home/home.html
    [22] http://www.avivabio.com/
    [23] http://www.flyion.com/
    [24] http://www.moleculardevices.com/
    [25] http://www.sophion.dk/
    [26] 莊信弘,“高通量電生理篩選元件之裝置,” 國立臺灣大學應用力學研究所碩士論文. 
    [27] 莊達人,””VLSI製造技術,”高立圖書,台北,1997
    [28] B. D. Gates, “Nanofabrication with molds & stamps,” Materials Today, Vol.
    8, 2005.
    [29]Y. C. Chung, Y. H. Chiu, Y. W. Wu, Y. T. Tao, ” Self-assembled biomimetic
    monolayers using phospholipidcontaining disulfides,” Biomaterials, Vol 26,
    pp 2313–2324, 2005.
    [30]E. Steinsland, T. Finstad, A. Hanneborg, “Etch rates of (100) , (111) and
    (110) single-crystal silicon in TMAH measured in situ by laser reflectance
    interferometry,” Sensors and Actuators, Vol. 86, pp. 73–80, 2000
    [31] S. A. McAuley, H. Ashraf, L. Atabo, A. Chambers, S. Hall, J. Hopkins, G.
    Nicholls, “Silicon micromachining using a high-density plasma source,”
    Journal of physics d : applied physics, Vol. 34, pp. 2769–2774, 2001

    下載圖示 校內:立即公開
    校外:2005-07-14公開
    QR CODE