| 研究生: |
王鈺清 Wang, Yu-Ching |
|---|---|
| 論文名稱: |
聚亞醯胺/氧化鋅 奈米複合材料之製備及性質之研究 Preparation and Properties of Polyimide-zinc oxide Nanocomposites |
| 指導教授: |
許聯崇
Hsu, Lien-Chung Steve |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 聚亞醯胺 、氧化鋅 、奈米複合材料 |
| 外文關鍵詞: | polyimide, zinc oxide, nanocomposites |
| 相關次數: | 點閱:130 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分成兩部份,第一部份利用溶膠-凝膠法製備氧化鋅奈米粒子(ZnO),再將其改質為表面帶有有機基團之氧化鋅奈米粒子(G-ZnO)。由X-ray、FT-IR與TGA分析顯示本研究成功製備出ZnO與G-ZnO奈米粒子,由UV-vis吸收光譜、PL與TEM可得知G-ZnO比ZnO呈現出更良好的尺寸穩定性,而ZnO與G-ZnO之顆粒大小由TEM可看出分別約為3.7nm與3.3nm。
第二部份為製備PI/ZnO與PI/G-ZnO奈米複合材料。利用6FDA和3’3DDS兩種單體聚合成PI之前驅物PAA,接著將ZnO與G-ZnO加入PAA中,可得PAA/ZnO與PAA/G-ZnO奈米複合材料,將PAA/ZnO與PAA/G-ZnO薄膜經由多段升溫條件,可於300℃脫水環化之後形成PI/ZnO與PI/G-ZnO薄膜。將薄膜進行各項分析研究,玻璃轉移溫度(Tg)會隨著ZnO與G-ZnO含量的增加而提高,當G-ZnO增加到達7wt %時其Tg為287℃,較純PI提高了約16℃,但添加ZnO與G-ZnO時會降低薄膜的熱裂解溫度。由UV-vis光譜可得知添加ZnO與G-ZnO會使穿透度下降,但在可見光之範圍還是有很好的光學穿透性。經由TEM觀察可看出G-ZnO均勻分散於PI基材中,但ZnO則有聚集的現象,可證實本實驗導入GOTMS為改質劑的確可有效地使氧化鋅奈米粒子均勻分散在PI基材中。
The research is divided into two parts. First, ZnO nanoparticles and 3-Glycidyloxypropyl-trimethoxysilane (GOTMS) modified ZnO nanoparticles (G-ZnO) have been synthesized via sol-gel method. TEM showed that the average size of ZnO nanoparticles and G-ZnO nanoparticles are 3.7nm and 3.3nm respectively. The existence of GOTMS on the G-ZnO nanoparticles surface effectively promotes the stability of colloidal G-ZnO nanoparticles which results in remaining almost the same size even after long period of time of storage.
Second, a series of new polyimide (PI) nanocomposites, PI/ZnO and PI/G-ZnO, have been prepared. The PI precursor, polyamicacid (PAA), was prepared by a low temperature polycondensation reaction between 4,4’-hexafluoroisopropylidene diphthalic anhydride (6FDA) and 3,3’-diaminodiphenyl sulfone (3,3’DDS). The ZnO and G-ZnO powders were added to the PAA solution. The PI/ZnO and PI/G-ZnO film were obtained by casting from PAA/ZnO and PAA/G-ZnO solutions and cured at 300°C. The existence of GOTMS on the G-ZnO nanoparticles surface can enhance the compatibility between the inorganic nanoparticles and the organic matrix. The resulting PI/G-ZnO nanocomposites have better dispersion and physical properties than the PI/ZnO nanocomposites. The glass transition temperature(Tg) of the PI/ G-ZnO film with 7 wt % G-ZnO was increased 25oC compared to the pure PI film. TEM showed that G-ZnO nanoparticles had better dispersion and uniformity in the PI matrix than the ZnO nanoparticles.
1.蔡中燕, 工業材料, 125, 120, (1997).
2. K. K. Kim, N. Koguchi, Y. W. Ok, T. Y. Seong, and S. J. Park, Appl. Phys. Lett. 84, 3810, (2004).
3. J. Goldberger, D. J. Sirbuly, M. Law, P. Yang, J. Phys. Chem. 109, 9, (2005).
4. J. B. Cui, C. P. Daghlian, U. J. Gibson, R. Pusche, P. Geithner, L. Ley, J. Appl. Phys. 97, 044315, (2005).
5. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, C. L. Lin, Appl. Phys. Lett. 84, 3654, (2004).
6. H. Saitoh, Y. Fukada, S. J. Ohshio. Ceram. Soc. Jpn. 111, 1, (2003).
7. J. B. Baxter, E. S. Aydil Appl. Phys. Lett. 86, 053114 (2005).
8. D. S. Burgess Photon. Spect. 39, 116 (2005).
9. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
10. B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett.,79, 7, 943, (2001).
11. 葉集賢, ”變阻器基材之氧化鋅陶瓷粉體水熱法製備”,台灣大學化工研究所碩士論文, (1997).
12. K. Kamata, K. Miyokawa, Chemitry Letters, 2021, (1984).
13. D. Jezequel, J. Guenot, N. Jouini, F. Fievet, J. Mater. Res., 10, 1, 77, (1995).
14. C. L. Carnes, K. J. Klabunde, Langmuir 16, 3764, (2000).
15. M. Castellano, E. Matijevic, Chem. of Mater., 1, 78, (1989).
16. T. Tsuchida, S. Kitajima, Chem. Lett.,1769, (1990).
17. S. M. Haile and W. Johnson, J. Am. Ceram. Soc., 72, 10, 2004, (1989).
18. M. Andres Verges, A. Mifsud, C. J. Serna, J. Chem. Soc. Faraday Trans, 86, 6, 959 (1990).
19. K. Fujita, K. Matsuda, Bull. Chem. Soc. Jpn.,65,2270 (1992).
20. A. Chittofrati, E. Matijevic, Colloids and Surface, 48, 65, (1990).
21. T. Trindade, P. O’Brien, J. Mater. Chem., 4, 10, 1611, (1994).
22. Singhal, V. Chhabra P. Kang, D. O. Shah, Materials Research Bulletin, 32, 2, 239, (1997).
23. B. P. Lim, J. Wang, S. C. Ng, C. H. Chew, L. M. Gan, Ceramics international, 24, 205, (1998).
24. O. Milosevic, and D. Uskokovic, Mater. Sci. and Eng., A128, 249, (1993).
25. O. Milosevic, D. Uskokovic, L. J. Karanovic, M. Tomasevic-Canovic, M. Trontelj, J. of Mater. Sci., 28, 5211, (1993).
26. O. Milosevic, B. Jordovic, D. Uskokovic, J. of Mater. Lett., 19, 4, 165, (1994).
27. T. Q. Liu, O. Sakurai, N. Mizutani, M. Kato, J. of Mater. Sci., 21,3698, (1986).
28. K. Ohshima, K. Tsuto, 化學工學論文集, 18, 3, 288, (1992).
29. Y. Lin, Z. Tang, Z. Zhang, J. Am. Ceram. Soc, 83, 11, 2869 (2000).
30. Q. Zhong , E. Matijevic, J. Mater. Chem., 6, 3, 443, (1996).
31. C. J. Brinker, G. W. Scherer, Acadmic Press,2, (1990).
32. T. Y. Tseng, J. M. Huang, J. G. Lin, J. Mater. Sci.24, 2735, (1989).
33. R. C. Mehrotra, J. Non-Cryst. Solid, 100, 1, (1988).
34. 周念萍, “特用化學技術發展應用計劃精密陶瓷粉末碳化的製程研發計劃”, CSSIRR-850-CA-05-001.
35. D. C. Bradley, R. C. Mehrota, C. P. Gaur, Acadmic Press, (1978).
36. 陳暉,陳姿秀,化工技術, 8, 5,166 (2000).
37. N. Yoda, H. Hiramoto, J. Macromol. Sci. Chem , 3 ,1641, (1984).
38. H. F. Mark, N. M. Bikales, C. G. Overberder, G. Menges, In Encyclopedia of Polymer science and engineering, Dekker, M. New York , 364, (1987).
39. M. T. Bogert, R. R. Renshaw, J. Am. Chem. Soc, 30,1135, (1908).
40. 林金雀, 化工資訊月刊,13 , 58, (1908).
41. 金進興, 工業材料 ,114 ,118, (1996).
42. 馬振基, 塑膠資訊 ,12 ,14,(1997).
43. H. D. Brit. Stenzenberger, Polym. J ,15, (1979).
44. R. W. Lauver, J. Appl. Polym. Sci ,17 ,2529, (1979).
45. J. V. Crivello, J. Polym. Sci ,11,1185, (1973).
46. N. Bilow, A. L. Landis, L. J. Miller, U.S. Patent 3,845,018,(1974).
47. R. A. Meyers, J. Polym. Sci.:Part A , 7 ,2757, (1969).
48. M. K. Ghosh, K. L. Mitta, In Polyimides:Fundamentals and Applications, Dekker, M. New York, 7, (1996).
49. C. E. Sroog, A. L. Endrey, S. V. Abramo, C. E. Berr, W. M. Edwards, K. L. Olivier, J. Polym. Sci.: Part A , 3 , 1373, (1965).
50. M. K. Ghosh, K. L. Mittal, In Polyimides:Fundamentals and Applications, Dekker, M. New York, 15, (1996).
51. K. J. Kim, T. E. Glass, G. D. Lyle, J. E. McGrath, Macromolecules
, 26,1344 , (1993).
52. C. Jung, T. Aoyama, T. Wada, H. Sasabe, M. Jikei, M. Kakimoto, High Perform. Polym , 12,205, (2000).
53. A. V. Rami. Reddy, P. Sreenivasulu Reddy, J. Appl. Polym. Sci , 58 ,1935, (1995).
54. A. A. Kuznetsov, J. High Perform. Polym , 12 ,445, (2000).
55. K. Y. Choi, S. K. Choi, J. Polym. Sci.:Part A , 20 ,1107, (1982).
56. M. Bruma, B. Schulz, T. Kopnick, Robinson, J. High Perform. Polym , 12 ,429, (2000).
57. M. Pasmanaban, M. Kakimoto, Y. Imai, J. Polym. Sci.:Part A , 28, 1569, (1990).
58. Yamada, Y. High Perform. Polym , 10, 92, (1998).
59. A. K. St. Clair, W. S. Slemp, SAMPE J , 21, 4, 28, (1985).
60. A. K. St. Clair, T. L. St. Clair, K. I. Shevket, Proceedings of the
Division of Polymeric Materials Science and Engineering , 51, 62 , (1984).
61. G. C. Eastmond, J. Paprotny, R. S. Trwin, Macromolecules , 29,1382, (1996).
62. W. A. Feld, B. Ramalingam, F. W.Harris, Polym. Sci.,Polym Chem. Ed. , 21, 319 , (1983).
63. P. M. Hergenrother, K. A. Watson, Jr. J. G. Smith, J. W. Connell, R. Yokota, Polymer , 46, 5077, (2002).
64. W. G. Kim, A. S. Hay, Macromolecules , 28, 371 , (1993).
65. R. Giesa, U. Keller, P. Eiselt, H. W. Schmidt, J. Polym. Sci.; Part A: Polym. Chem , 31,141, (1993).
66. T. Matsumoto, Macromolecules , 32, 4933, (1999).
67. W. Volksen, H. J. Cha, M. I. Sanchez, D. Y. Yoon, React. Funct. Polym , 30, 61, (1996).
68. E. Schab-Blacerzak, D. Sek, A. Volozhin, T. Chamenko, B. Jarzabek, Euro. Polym. J , 38, 423, (2002).
69. F. W. Harris, L. C. Hsu, C. C. Tso, Polymer Preprint , 31, 1, 342, (1990).
70. 吳仁傑,工業材料, 125, 115, (1997).
71. Sasaki,Noriaki,Komarneni,Sridhar,Roy,Rustum, American Ceramic Society Bulletin, 61, 6, 649, (1982).
72. 蔡中燕,化工資訊, 28, (1998).
73. 陳文章, 化工, 46, 5, 56,(1999).
74. D.M. Delozier, R.A. Orwoll, J.F. Cahoon, Polymer, 43, 813, (2002).
75. Z. M. Liang, J. Yin, H. J. Xu, Polymer, 44, 1391, (2003).
76. J. H. Chang, M. P. Kwang, D. Cho, Polymer Engineering and Science, 41, 9, 1514, (2001).
77. J. H. Chang, M. P. Kwang, Polymer Engineering and Science, 41, 12, 2226, (2001).
78. S. H. Hsiao, G. S. Liou ,L. M. Chang, Journal of Applied Polymer Science, 80, 7, 206, (2001).
79. S. H. Hsiao, G. S. Liou ,L. M. Chang, Journal of Applied Polymer Science, 80, 7, 206, (2001).
80. A. Usuki, M. Kawasumi, Y. Kojima, Journal of Materials Research, 7, 856, (1991).
81. P. B. Messersmith, E. P. Giannelis, Journal of Polymer Science Part A: polymer Chemistry, 33, 1047, (1995).
82. P. B. Messersmith, E. P. Giannelis, Journal of Polymer Science Part A: polymer Chemistry, 33, 1047, (1995).
83. S. D. Burnside, E. P.Giannelis, Chemistry of Materials, 7, 9, 1597, (1995).
84. 樂文禮,“聚醯亞胺奈米矽氧複合材料選擇性封裝之研究”,國立成功大學化學工程研究所碩士論文, (2002).
85. A. B. Morgan ,J. W. Gilman ,C. L. Jackson, Macromolecules, 34, 2735, (2001).
86. H. L. Tyan, K. H. Wei, T. E. Hsieh, Journal of Polymer Science Part B: Polymer Physics, 38, 2873, (2000).
87. A. Gu, F. C. Chang, Journal of Applied Polymer Science, 79, 289, (2001).
88. T. Agag, T. Koga, T. Takeichi, Polymer, 42, 3399, (2001).
89. K. A. Carrado, L. Xu, Chemistry of Materials, 10, 1440, (1998).
90. 郭文法,工業材料, 125, 129, (1997).
91. L. Spanhel, M. A. Anderson, J. Am. Chem. Soc., 113, 2826, (1991).
92. C. H. Hung, W. T. W, J. Mater. Chem., 15,267, (2005).
93. E. A. Meulenkamp, J Phys. Chem. B, 102, 5566, (1998).
94. R. K. Boggess, L. T. Taylor, J Polym Sci, Polym Chem Ed , 25, 685, (1987).
95. T. Sawada, S. Ando, Chem Mater, 10, 3368, (1998).
96. J. D. Rancourt, L. T. Taylor, Macromolecules, 20, 790, (1987).