簡易檢索 / 詳目顯示

研究生: 廖建智
Liao, Chien-Chih
論文名稱: 雷射切割加工頭之旋流氣體流道設計與流場模擬分析
Flow Field Analysis and Design of a Laser Cutting Nozzle
指導教授: 李輝煌
Lee, Huei-Huang
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 142
中文關鍵詞: 雷射切割偏光板有限元素分析田口方法熱效應區旋流
外文關鍵詞: Laser cutting, Polarizer, Taguchi methods, Swirl flow, HAZ, Finite element analysis
相關次數: 點閱:113下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷射科技已被發展出來數十年,從原先的軍事運用取向到轉運用到民生工業中,以及現在大舉投入工業中成為新興的工業生產的核心技術。雷射加工應用一直是這十幾年來,科技業與工業中快速蓬勃發展的主要技術之一。相較於傳統工業技術,雷射具有的高能量密度、可加工對象廣泛、不需真空環境或輻射防護、非接觸式加工等等優點使其成為工業發展的核心關鍵。雷射也發展出許多不同的類型,使其能夠更廣泛的適應各種工業需求。依照加工對象的不同可以選擇不同雷射,如使用Nd: YAG雷射加工金屬、使用CO2雷射加工玻璃或高分子材料。而本文研究的對象是使用CO2雷射切割偏光板,在光電產業中原先都使用刀輪這類傳統接觸式加工來進行切割。本研究中希望透過探討雷射切割過程中所使用的輔助氣體在雷射加工頭中的流道設計,來分析輔助氣體與雷射切割過後熱效應區之間的關係。透過改善熱效應區大小,來提升雷射切割偏光板的產能與良率。
    為了透過有限元素模擬了解氣體在雷射切割的過程中對偏光板的影響,首先需要具備有限元素分析軟體的操作能力,也同時需要有流體力學等基礎觀念。並且還需要透過文獻探討,以及有效率的實驗設計法來讓研究更快取得結果與並讓研究方向更貼近目標。除了透過模擬了解氣體的流場狀態,更需要透過切割實驗來找尋模擬與實際狀況的關聯。透過田口方法的實驗規劃可以讓實驗更有效率,還能同時能夠分析各因子對切割品質的影響。
    經由有限元素模擬與田口實驗法的使用,本文提出了對於偏光板被雷射切割後產生的熱效應區邊框問題的觀察。並透過模擬提出了經由改變雷射切割加工頭的構造與流道設計的建議,來改變輔助氣體流場達到改善熱效應區問題。經由田口實驗法,來比較並提出雷射功率、加工速度、脈衝頻率與氣體流量對於熱效應區大小的影響力。

    Laser technology was widely used in modern industry. The main study of this thesis was about the relation between the flow field of laser cutting nozzle and the width of the heat affected zone on polarizers. By using computer-aided engineering software (FLUENT) to simulate the flow field of clean dry air (CDA) in the nozzle. The laser cutting nozzle was combined with a barrel and a mouthpiece. After analyzing the flow field of the CDA in laser cutting nozzle with original design, we designed a new laser cutting nozzle with two gas runner to create swirl flow in the nozzle. To compare the results of simulations, we started to have experiments to find the relation between the heat affected zone (HAZ). Five control factors were selected as follows: (1) power of the laser source, (2) velocity of cutting, (3) frequency of the pulsed laser, (4) volume flow rate of CDA, and (5) the pressure of CDA. By using one-factor-at-a-time experiments, we find out the relations for each factor with the width of HAZ. And using Taguchi method to find the optimal parameters for each factor with two different designs of nozzles. By using variation analysis, we can decide which factor is the most significant factor in controlling the width of HAZ.

    From simulations and experiments, we have several conclusions: (1) With higher power the bigger width of HAZ will get, and when the power over 16% the position of the pulsed spot will have scorch marks like splash in both sides. (2) The width of HAZ will decrease with the increasing cutting speed. Because of the laser source with a PSO system which can control the distance between every two pulsed spots, and when the cutting speed increased, the energy on the polarizers for per unit area is decreasing. So the residual heat is getting lower and the width of HAZ is also smaller. (3) With bigger of the flow rate, the width of HAZ is bigger too. We found that when the flow rate up to 50 L/min, the width of HAZ will substantially increase. Because of the expansion effect will stronger than the cooling effect on that situation, so the softening polarizers will be expanded before being solidified. (4) But the frequency of pulsed laser and the pressure of CDA, the reaction of the width of HAZ has no clear trend. (5) According to the variation analysis of the Taguchi methods, we found that the most significant factor is the power of the laser, the second one is the cutting speed, and the most insignificant one is the flow rate of the CDA. (6) With simulations to analyze the flow field of CDA in the nozzle, we found that the swirl flow can be created by simply modified the gas runners’ position. The nozzle with two gas runners is much easier to make and has better benefits than it with three gas runners. And when the gas runners with 7O of the inclination, the greatest swirl flow will get.

    摘要 I Extended Abstract II 誌謝 XIV 目錄 XVI 圖目錄 XVIII 表目錄 XXI 第一章 緒論 1 1-1 前言[1][2][3] 1 1-2研究動機與目的 4 1-3研究方法 6 1-4 文獻探討 7 1-5 文章架構 14 第二章 相關技術與理論 17 2-1雷射相關技術 17 2-1-1雷射歷史演進[3][14] 17 2-1-2氣體雷射[13] 17 2-1-3 固體雷射[1][2] 18 2-1-4 雷射加工應用[1][3][14] 19 2-2分析軟體介紹[16][17][18] 21 2-2-1 計算流體力學 22 2-2-2 有限體積法[19] 23 圖2-1 有限體積法之計算網格 24 2-2-3 質量守恆方程式 25 2-2-4 動量守恆方程式 25 2-2-5 能量守恆方程式 26 2-3田口實驗設計法[20][21] 27 2-3-1 實驗設計法 28 2-3-2 品質特性 29 2-3-3 品質損失函數 30 2-3-4 實驗因子的定義 32 2-3-5 變異分析 33 第三章 研究與有限元素分析流程 35 3-1 研究流程規劃 35 3-2 有限元素分析流程[22] 36 3-2-1定義材料性質 38 3-2-2 建立有限元素模型 38 3-2-3 選取元素與網格切割 41 3-2-4 邊界條件定義 46 3-3 驗證實驗規劃 48 第四章 模擬與實驗結果 51 4-1 雷射加工頭之氣體流場模擬結果 51 4-1-1 速度場分析 51 4-2 第一階段實驗 61 4-2-1 一次一因子實驗之因子選擇 61 4-2-2 一次一因子實驗結果 64 4-2-2田口實驗表設計 83 4-2-3 田口方法實驗結果 86 4-3 旋流流道加工頭實驗 96 4-3-1 旋流雷射加工頭 96 4-3-2 旋流流道雷射加工頭之田口實驗 100 4-4 熱效應區量測討論 107 第五章 進階模擬討論 110 5-1 進氣口流道角度討論 110 5-2 吹嘴末端流道設計討論 115 5-3 模擬與實驗之流量討論 120 第六章 結論與未來展望 123 6-1 結論 123 6-2 未來展望 128 參考文獻 138 索引 140

    [1] 陳蒼杰, 圖解雷射應用與原理, 世茂出版有限公司, 台灣 (2001).
    [2] 劉國基、張百齊, Nd-YAG雷射的加工應用, 遠東學報, 台灣 (2001).
    [3] 楊隆昌, 雷射發展的趨勢與應用, 中工高雄會刊, 台灣 (2014).
    [4] 王佑仁, 雷射線光源於玻璃切割之研究, 國立成功大學機械工程學系碩士論文, 台南, 台灣 (2004).
    [5] 蘇志宏, 水輔助雷射加工之熱流分析, 國立成功大學機械工程學系碩士論文, 台南, 台灣 (2006).
    [6] 吳如堯, 光學透鏡溫度量測與雷射頭散熱之數值模擬, 國立成功大學機械工程學系碩士論文, 台南, 台灣 (2014).
    [7] Chen, Shang-Liang, The effects of high-pressure assistant-gas flow on high-power CO2 laser cutting, Journal of Materials Processing Technology, Vol. 88, No. 1, pp. 57-66 (1999).
    [8] Yokoya, Shinichiro, Shigeta Takagi, Tomonori Ogata, Seiji Katayama, and Akira Matunawa, Laser welding in vortex flow shielding gas with tornado nozzle. Numerical analysis of swirling motion on welding results, Quarterly Journal of the Japan Welding Society (Japan), Vol. 19, No. 1, pp. 37-43, (2001).
    [9] 蔡德穎, 雷射蝕刻之旋流噴嘴流場研究, 國立成功大學機械工程學系碩士論文, 台南, 台灣 (2003).
    [10] Guo, Shaogang, Hu Jun, Luo Lei, and Zhenqiang Yao, Numerical analysis of supersonic gas-dynamic characteristic in laser cutting, Optics and Lasers in Engineering, Vol. 47, No. 1, pp. 103-110 (2009).
    [11] Jun, Hu, Zhuoxian Zhang, Jingwen Luo, and Xiaojun Sheng, Simulation and experiment on standoff distance affecting gas flow in laser cutting, Applied Mathematical Modelling, Vol. 35, No. 2, pp. 895-902 (2011).
    [12] 林汶宥, 脈衝噴流輔助雷射鑽孔加工之研究, 國立雲林科技大學機械工程系碩士論文, 雲林, 台灣 (2011).
    [13] 石井 明, CO2雷射加工, 全華圖書股份有限公司, 台灣(1995).
    [14] 張國順、鄭壽昌, 現代雷射製造技術, 新文京出版社, 台灣 (2008).
    [15] COHERENT ®, Diamond J-3 Series RF-Excited OEM Industrial CO2 Laser, COHERENT ® (2015).
    [16] ANSYS Workbench User’s Guide, Release 15.0, ANSYS, Inc. (2013).
    [17] ANSYS FLUENT User’s Guide, Release 15.0, ANSYS, Inc. (2013).
    [18] ANSYS FLUENT Tutorial Guide, Release 15.0, ANSYS, Inc. (2013).
    [19] 李紀衡, 降低軸向柱塞泵流量脈動之配流盤設計與分析, 國立成功大學機械工程學系碩士論文, 台南, 台灣 (2015).
    [20] Huei-Huang, Lee, Taguchi Methods: Principles and Practices of Quality Design, Gau Lin Book Co. Ltd., Taipei, Taiwan (2011).
    [21] 李威昇, 觸媒轉化器之陶瓷蜂巢結構體設計與成形分析, 國立成功大學工程科學系碩士論文, 台南, 台灣 (2015).
    [22] Huei-Huang, Lee, Finite Element Simulations with ANSYS Workbench 15, 全華圖書股份有限公司, 台灣 (2014).
    [23] Contrel Technology Co., Ltd, http://www.contrel.com.tw
    [24] 廖承運, 間歇式噴氣輔助脈衝雷射鑽孔加工之研究, 國立雲林科技大學機械工程系碩士論文, 雲林, 台灣 (2013).
    [25] 鄭諺儒, 放電電漿輔助雷射加工之研究, 國立雲林科技大學機械工程系碩士論文, 雲林, 台灣 (2015).

    下載圖示 校內:2021-08-18公開
    校外:2021-08-18公開
    QR CODE