| 研究生: |
江奇儒 Chiang, Chi-Ju |
|---|---|
| 論文名稱: |
聚吡咯奈米碳管複合材料固定酵素電極於葡萄糖/氧生物燃料電池系統之應用 Application of polypyrrole carbon nanotube enzyme composite electrodes to the glucose/oxygen biofuel cell system |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 導電性高分子 、奈米碳管 、漆氧化酵素 、葡萄糖氧化酵素 、酵素電極 、生物燃料電池 |
| 外文關鍵詞: | conducting polymers, carbon nanotubes, laccase, glucose oxidase, enzyme electrodes, biofuel cells |
| 相關次數: | 點閱:182 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
葡萄糖氧化酵素 (Glucose oxidase) 和漆氧化酵素 (laccase) 藉由聚吡咯 (polypyrrole) 的薄膜被固定在碳紙電極上,以分別作為陽極和陰極之用。吡咯單體和酵素是一起混合在磷酸緩衝液中以進行電聚合包埋酵素。Nafion® 117薄膜被使用來分隔兩半電池,而電池的功率表現則是以變電壓的方式來量測,溶液中的葡萄糖濃度為20 mM。嘗試將HQS (8-hydroxyquinoline-5-sulfonic acid) 添加到陽極,而將ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) 加入陰極,可以使得電池的效能有所提升。此外,進一步地將奈米碳管鋪覆在碳紙電極上,可以使電池的效能表現大幅增進。從功率-電壓的圖形可以看到,Nafion® 117型電池的最佳效能為0.08 V時有4.506 mW/cm2的功率輸出,開環電壓為0.235 V。
經由SEM來觀察電極的表面型態並加以討論,從中可以發現,聚吡咯已經由電聚合方式成功地聚合在碳紙/奈米碳管的電極上。從FT-IR和UV-Vis光譜分析的結果可知,陰陽兩極各別的酵素皆已成功地藉由電聚合方式固定在電極上。
鹽橋也被應用於連結陰陽兩極以建構一個反應器較大的系統,此系統可以提供溶液較好的強制對流環境以利電池反應進行,因此鹽橋型電池可以得到較好的效能表現,其開環電壓為0.269 V,最佳功率為7.426 mW/cm2 (在0.12 V)。總而言之,雖然目前的研究仍待更多的努力以求突破,但從本論文的結果來看,以酵素啟動葡萄糖與氧分別進行氧化與還原反應的生物燃料電池系統是具有應用的潛力與可行性的。
Glucose oxidase and laccase were immobilized onto the polypyrrole film fabricated on carbon papers as anode and cathode, respectively. Pyrrole monomer and enzyme were mixed in phosphate buffer solution for electropolymerization. A NafionÒ 117 membrance was inserted to separate both half cells. The power density with respect to different operating voltages was obtained with glucose concentration of 20 mM. Addition of redox mediators, HQS (8-hydroxyquinoline- 5-sulfonic acid) to the anode cell and ABTS (2,2’-azino-bis(3-ethylbenzothiazoline- 6-sulfonic acid) to the cathode cell, also drew significant effect on the power output of the comprised biofuel cell. Carbon nanotubes (CNTs) was further coated onto carbon paper and enormous enhancement of power density was achieved. The power-voltage curve indicated that the best operation could be achieved at 0.08 V, with a maximum power density of approximate 4.506 mW/cm2.
SEM photos for the observation of surface morphology of the electrodes were inspected and discussed. FT-IR and UV-Vis spectrum indicated that the immobilization of the respective enzyme onto the electrodes was successfully achieved by electropolymerization. Additionally, resistance of the electrodes was measured by four-point probe method.
A salt bridge was also applied to connect both half cells. This fuel cell system provided a better convective flow environment for the reactions and a higher maximum power density of 7.426 μW/cm2 at 0.12 V was achieved. In summary, the enzyme triggered glucose/O2 fuel cell system is feasible, yet there is still a lot of work needed for investigation.
1. F. Davis, S. P. J. Higson, Biosensors and Bioelectronics, 22, 1224-1235, 2006
2. S. C. Barton, J. Gallaway, P. Atanassov, Chemical Review, 104, 4867-4886, 2004
3. R. A. Bullen , T. C. Arnot , J. B. Lakemanc, F. C. Walsh, Biosensors and Bioelectronics, 21, 2015-2045, 2006
4. Y. Liu, S. Dong, Electrochemistry Communications, 9, 1423-1427, 2007
5. K. Rabaey, W. Verstraete, Trends in Biotechnology, 23, 2005
6. I. Kelly, Robotica, 21, 399-406, 2003
7. S. D. Minteer, B. Y. Liaw, M. J. Cooney, Current Opinion in Biotechnology, 18, 1-7, 2007
8. J. Kim, H. Jia, P. Wang, Biotechnology Advances, 24, 296-203, 2006
9. D. Ivnitski, B. Branch, P. Atanassov, C. Apblett, Electrochemistry Communications, 8, 1204-1210, 2006
10. G. R. Palmore, H. H. Kim, Journal of Electroanalytical Chemistry, 464, 110-117, 1999
11. I. Willner, G. Arad, E. Katz, Biosensors and Bioelectronics, 44, 214, 1998
12. E. Katz, I. Willner, A. B. Kotlyar, Journal of Electroanalytical Chemistry, 479, 64-68, 1999
13. S. Tsujimura, M. Kawaharada, T. Nakagawa, K. Kano, T. Ikeda, Electrochemistry Communications, 5, 138-141, 2003
14. T. Chen, S. C. Barton, G. Binyamin, Z. Q. Gao, Y. C. Zhang, H. H. Kim, A. Heller, Journal of the American Chemical Society, 123, 8630, 2001
15. N. Mano, H. H. Kim, A. Heller, The Journal of Physical Chemistry B, 106, 884, 2002
16. N. Mano, J. L. Fernandez, Y. Kim, W. Shin, A. J. Bard, A. Heller, Journal of the American Chemical Society, 125, 15290, 2003
17. V. Soukharev, N. Mano, A. Heller, Journal of the American Chemical Society, 126, 8368, 2004
18. Y. Liu, M. K. Wang, F. Zhao, Z. Guo, S. J. Dong, Journal of Electroanalytical Chemistry, 581, 1, 2005
19. N. L. Akers, C. M. Moore, S. D. Minteer, Electrochimica Acta, 50 2521-2525, 2004
20. L. Brunel, J. Denele, K. Servat, K. B. Kokoh, C. Jolivalt, M. Rolland, S. Tingry, Electrochemistry Communications, 9, 331-336, 2007
21. http://www-biol.paisley.ac.uk/marco/enzyme_electrode/chapter3/chapter3_page4.htm
22. M. T. Stankovitch, L. M. Schopfer, V. J. Massey, Journal of Biological Chemistry, 253, 4971, 1978
23. K. Piontek, M. Antorini, T. Choinowski, Journal of Biological Chemistry, 277, 37663-37669, 2002
24. E. I. Solomon, U. M. Sundaram, T. E. Machonkin, Chemical Review, 96, 2577, 1996
25. A. I. Yaropolov, J. W. Whittakerd, L. Gortona, Biosensors and Bioelectronics, 20, 2517-2554, 2005
26. A. E. Palmer, S. K. Lee, E. I. Solomon, Journal of the American Chemical Society, 123, 6591, 2001
27. S. Tsujimura, K. Kano, T. Ikeda, Jornal of Electroanalycial Chemistry, 576, 113-120, 2005
28. W. E. Farneth, M. B. D’Amore, Journal of Electroanalytical Chemistry, 581, 197-205, 2005
29. F. Barriere, P. Kavanagh, D. Leech, Electrochemica Acta, 51, 5187-5192, 2006
30. N. Mano, A. Heller, N. Mao, Journal of the American Chemical Society, 125, 6588-6594, 2003
31. D. B. Naik, P. Dwibedy, G. R. Dey, K. Kishore, P. N. Moorthy, The Journal of Physical Chemistry A, 102, 684-688, 1998
32. P. W. Carr, L. D. Bowers, Immobilized Enzymes in Analytical and Clinical Chemistry, Wiley, New York, 1980
33. 陳逸信, 苯胺共聚物導電高分子之電化學聚合及應用, 國立成功大學化工碩士論文, 4-7;15-20, 2002
34. J. Roncali, Chemical Review, 92, 711-738, 1992
35. A. F. Diaz, J. A. Logan, Journal of Electroanalytical Chemistry, 111, 111, 1980
36. G. Harsanyl, Polymer Films in Sensor Applications: Technology, Materials, Devices and Their Characteristics , 209, Technomic Pub. Co., 1995
37. B. C. Ku, Synthesis and Applications of Electrically Conducting Polymer Nanocomposites, Department of Chemistry, University of Massachusetts, 42-58, 2005
38. T. Ahujaa, I. A. Mira, D. Kumara, Rajesh, Biomaterials, 28, 791-805, 2007
39. 廖坤厚, 催化劑特性對準直性奈米碳管成長之影響, 國立成功大學材料科學博士論文, 1-3, 2006
40. 成會明, 奈米碳管, 212-213,五南,2004
41. O. Besenhard, Handbook of Battery Materials, 127, Wiley-VCH, 1999
42. A. Merkoci, M. Pumera, X. Llopis, B. Pe´rez, M. D. Valle, S. Alegret, Trends in Analytical Chemistry, 24, 1-2, 2005
43. http://www.chemie.fu-berlin.de/~zobel
44. S. Iijima, Nature, 354, 56-58, 1991
45. R. T. K. Baker, P. S. Harries, Chemistry and Physics of Carbon, 83, Marcel Dekker, 1978
46. Enzymatic Assay of Glucose Oxidase, http://www.amano-enzyme.co.jp /pdf/diag_e/cat_diag_GO-AM_e.pdf
47. G. Tayhas, R. Palmore, H. H. Kim, Journal of Electroanalytical Chemistry, 464, 110, 1999
48. 汪玉銘, 定電流聚合導電性高分子法製備葡萄糖生物感測器之研究, 國立成功大學化工博士論文, 57-58, 2003
49. C. G. Hu, W. L. Wang, K. J. Liao, G. B. Liu, Y. T. Wang, Journal of Physics and Chemistry of Solids, 65, 1731-1736, 2004
50. Y. W. Rho, O. A. Velev, S. Srinivasan, Journal of the Electrochemical Society, 141, 8, 1994
校內:2027-06-01公開