| 研究生: |
黃耿彬 Huang, Keng-Pin |
|---|---|
| 論文名稱: |
溫度與陽極氣體條件對高溫型質子交換膜燃料電池特性影響之研究 EFFECTS OF TEMPERATURE AND ANODIC CONDITIONS ON CHARACTERISTICS OF THE HIGH-TEMPERATURE PEM FUEL CELLS |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 高溫型質子交換膜燃料電池 、重組氣體 、聚苯並咪唑 、金屬雙極板 、一氧化碳容忍度 、稀釋效應 |
| 外文關鍵詞: | High-temperature proton exchange membrane fuel cell (PEMFC), Reformate gases, Polybenzimidazole (PBI), Metallic bipolar, CO tolerance, Dilution effect |
| 相關次數: | 點閱:208 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高溫型質子交換膜燃料電池具有較高抗一氧化碳的毒化能力以及高穩定特性,其在熱力學效率與非貴金屬觸媒應用可行性等方面皆具有發展優勢,加上天然氣或甲烷作為富氫氣體來源之高發展性,使得甲烷重組式高溫型質子交換膜燃料電池系統具有成為未來氫能科技主流之一的潛力。本研究結合以上兩項未來趨勢,提供模擬天然氣(甲烷)重組合成氣之不同氣體成分之混合氣作為燃料電池陽極氣體,針對高溫型質子交換膜燃料電池進行性能及電化學阻抗之測試。
在本研究中,使用Polybenzimidazole (PBI)做為膜電極組的材料,此材料具有較高的性能穩定性以及一氧化碳的容忍度,並且使用了金屬雙極板以及石墨雙極板。金屬雙極板具有較佳的機械特性、抗震能力、以及較輕的重量以減少整體重量,因此在本研究中,使用PBI以及金屬雙極板建立一個單電池進行測試。
本實驗結果顯示,操作溫度對高溫型質子交換模燃料電池影響非常顯著,當電池操作溫度由120 oC提高至180 oC時,性能可有效提升。另外,提高溫度能有效提高燃料電池之抗CO毒化能力,於120 oC時,6.10 % CO/balanced H2條件下,性能較純氫條件明顯下降,但當溫度提高至180 oC時,其最大功率密度則較120 oC提高188 %。由電壓暫態行為得知,此現象乃歸因於低溫時CO於觸媒上之吸附反應較為劇烈。同時,甲烷對高溫型質子交換膜燃料電池之影響僅為些微之氫氣稀釋作用。在本研究選定的H2/CO/N2/CH4混合氣成份範圍內,甲烷重組氣成份濃度在電池溫度高於160 oC時,對性能影響不顯著,故建議若甲烷合成氣未經氫氣純化之程序即通入高溫型質子交換模燃料電池,應保持電池溫度高於160 oC以上。
The high-temperature proton exchange membrane fuel cell (PEMFC) has the features of high CO tolerance and high power output stability. In addition, it has the development advantages of high thermodynamic efficiency and high practicability for non-precious metallic catalyst applications. Furthermore, the discovery of shale gases and oil increases the feasibility of using natural gases or methane as sources of hydrogen-rich reformate gases. The development of a reformed methane high-temperature PEMFC system is thus one of the most promising hydrogen technologies. In this study, it is focused on the two such technologies, high-temperature PEMFC and methane reforming. The performance tests and electrochemical impedance analysis of a high-temperature PEMFC are carried out under different simulated methane reformate gases.
Polybenzimidazole (PBI) is used as the membrane material in this study, as it has the features of high-performance stability and high CO tolerance. Moreover, compared to graphite bipolar plates, metallic bipolar plates have better mechanical properties and anti-vibration capability, as well as lighter weight. Metallic bipolar plates and a PBI membrane are used to setup a single cell and examine its performance.
In general, the performance of metallic bipolar plates is better than graphite. However, both of the bipolar material have the same trends. For metallic and graphite bipolar plates, the experimental results show that the cell temperature has a significant effect on the cell performance. When the temperature increases from 120 °C to 180 °C, the performance is significantly enhanced. Moreover, the CO tolerance of the fuel cell increases along with the temperature. At the same time, methane is fed in the anode stream to assess the performance of the cell under different simulated methane reformate gases. The test of various CH4 / H2 mixtures reveals the residual methane in the reformate gases only decreases fuel cell performance slightly due to the dilution effect. H2/CO/N2/CH4 mixtures are also examined in this study, and these had only a small effect on the fuel cell performance at cell temperatures higher than 160 °C. As such, it is recommended that the cell temperature should be kept higher than 160 °C. As a result, it is suggested to maintain fuel cell temperatures greater than 160 oC when using reformate gases without CO cleaning processes
[1] Larminie, J., Dicks, A., Fuel Cell Systems Explained, 2nd Edition, John Wiley & Sons Inc., 2003, New York.
[2] https://energy.gov/eere/fuelcells/fuel-cell-technologies-office
[3] https://energy.gov/
[4] Tang, Y.H., Zhang, J.J., Song, C.J., Liu, H., Zhang, J.L., Wang, H.J., Mackinnon, S., Peckham, T., Li, J., McDermid, S., and Kozak, P., “Temperature Dependent Performance and In Situ AC Impedance of High-temperature PEM Fuel Cells Using the Nafion-112 Membrane,” J. Power Source, 2006, Vol. 153, pp.A2036-A2043
[5] Ge, S. and Wang, C.Y., “Liquid Water Formation and Transport in the PEFC Anode,” J. Power Source, 2007, Vol. 154, pp.B998-B1005.
[6] Tuber, K., Pocza, D., and Hebling, C., “Visualization of Water Buildup in the Cathode of a Transparent PEM Fuel Cell,” J. Power Sources, 2003, Vol. 124, pp.403-414.
[7] Li, Q., Jensen, J.O., Savinell RF, Bjerrum NJ. “High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells,” Progress in Polymer Science, 2009, Vol.34, pp.449–77.
[8] Schmidt, T.J., Baurmeister, J., “Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode,” J. Power Source, 2008, Vol.176, pp.428-34.
[9] Lebæk, J., Ali, S.T., Møller, P., Mathiasen, C., Nielsen, L.P., Kær, S.K., “Quantification of in situ Temperature Measurements on a PBI-based High Temperature PEMFC Unit Cell,” Int. J. Hydrogen Energy. 2009, Vol. 35, pp.9943-9953.
[10] Zhang, J., Tang, Y., Song, C., Zhang, J., “Polybenzimidazole-Membrane-Based PEM Fuel Cell in the Temperature Range of 120–200 °C,” J. Power Source, 2007, Vol.172, pp.163–71.
[11] Oono, Y., Sounai, A., Hori, M., “Influence of the Phosphoric Acid-Doping Level In A Polybenzimidazole Membrane On The Cell Performance Of High-Temperature Proton Exchange Membrane Fuel Cells,” J. Power Source, 2009, Vol. 189(2), pp. 943-9
[12] Oono, Y., Fukuda, T., Sounai, A., Hori, M., “Influence of Operating Temperature on Cell Performance and Endurance of High Temperature Proton Exchange Membrane Fuel Cells,” J. Power Source. 2010, Vol.195, pp. 1007–14.
[13] George Bandlamudi, “Systematic Characterization of HT PEMFC Containing PBI / H3PO4 systems,” Logos Verlag Berlin GmbH, 2011, Berlin
[14] Wainright, J. S., Wang, J.-T., Weng, D., Savinell, R. F., and Litt, M., “Acid-doped Polybenzimidazoles: A New Polymer Electrolyte,” J. Electrochem Soc. 1995, Vol.142, No.7, pp.L121–L123
[15] Lobato, J., Cañizares, P., Rodrigo, M. A., Linares, J. J., and Manjavacas, G., “Synthesis And Characterisation Of Poly [2,2-(M-Phenylene)-5,5 -Bibenzimidazole] As Polymer Electrolyte Membrane For High Temperature PEMFCs,” J. Membr Sci, 2006, Vol. 280, No. 1-2, pp. 351–362.
[16] Mader, J., Xiao, L., Schmidt, T. J., and Benicewicz, B. C., “Polybenzimidazole/Acid Complexes As High-Temperature Membranes,” Adv. Polym Sci, 2008, Vol.216, No.1, pp.63–124.
[17] He, R., Li, Q., Bach, A., Jensen, J. O., and Bjerrum, N. J., “Physicochemical Properties Of Phosphoric Acid Doped Polybenzimidazole Membranes For Fuel Cells,” J. Membr Sci, 2006, Vol. 277, No. 1-2, pp. 38–45,
[18] Bae, J.-M., Honma, I., Murata, M., amamoto, T. Y., Rikukawa, M., and Ogata, N., “Properties Of Selected Sulfonated Polymers As Proton-Conducting Electrolytes For Polymer Electrolyte Fuel Cells,” Solid State Ionics, 2002, Vol. 147, No. 1-2, pp. 189–194,
[19] Jouanneau, J., Mercier, R., Gonon, L., and Gebel, G., “Synthesis Of Sulfonated Polybenzimidazoles From Functionalized Monomers: Preparation Of Ionic Conducting Membranes,” Macromolecules, 2007, Vol. 40, No. 4, pp. 983–990,
[20] Ubong, E.U., Shi, Z., Wang, X., “Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-Based PEM Fuel Cell,” J. Electrochem. Soc., 2009, Vol. 156, pp. B1276.
[21] http://www.fuelcelltoday.com/technologies/pemfc
[22] Wen, C.Y., Lin, Y.S., Lu, C.H., “Experimental Study Of Clamping Effects On The Performances Of A Single Proton Exchange Membrane Fuel Cell And A 10-Cell Stack,” J. Power Source, 2009. Vol. 192, pp 475-485
[23] http://auto.howstuffworks.com/
[24] Yang, C., Costamagna, P., Srinivasan, S., Benziger, J., and Bocarsly, A.B., “Approaches and Technical Challenges to High Temperature Operation of Proton Exchange Membrane Fuel Cells,” J. Power Source, 2001, Vol. 103, pp.1-9.
[25] Wilson, M.S., Derouin, C.R., Valerio, J., and Gottesfeld, S., “Electrocatalysis Issues in Polymer Electrolyte Fuel Cells,” Electrocatalysis issues in polymer electrolyte fuel cells, 1993, Vol. pp.1.1203-1.1208.
[26] Chu, H.S., Wang, C.P., Liao, W.C., and Yan, W.M., “Transient Behavior of CO Poisoning of the Anode Catalyst Layer of a PEM Fuel Cell,” J. Power Source, 2006, Vol. 159, pp.1071-1077.
[27] Jimenez, S., Soler, J., Valenzuela, R.X., and Daza, L., “Assessment of the Performance of a PEMFC in the Presence of CO,” J. Power Source, 2005, Vol. 151, pp.69-73.
[28] Andreasen, S.J., Vang, J.R., and Kaer, S.K., “High Temperature PEM Fuel Cell Performance Characterisation with CO and CO2 Using Electrochemical Impedance Spectroscopy,” Int. J. Hydrogen Energy, 2011, Vol. 36, pp.9815-9830.
[29] Li, Q., He, R.,. Jensen, J.O., Bjerrum, N.J., “Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C,” Chemistry of Materials, 2003, Vol.15, pp.4896-4915.
[30] Das, S.K, Reis, A., Berry, K.J., “Experimental Evaluation Of CO Poisoning On The Performance Of A High Temperature Proton Exchange Membrane Fuel Cell,” J. Power Source, 2009, Vol. 193, pp. 691–698.
[31] Krishnan, P., Park, J.S., Kim, C.S., “Performance Of A Poly(2,5-Benzimidazole) Membrane Based High Temperature PEM Fuel Cell In The Presence Of Carbon Monoxide,” J. Power Source, 2006, Vol. 159, pp. 817–823.
[32] Linares, J.J., Sanches, C., Paganin, V.A., Gonzalez, E.R., “Performance Of A Poly(2,5-Benzimidazole)-Based Polymer Electrolyte Membrane Fuel Cell,” Int. J. Hydrogen Energy, 2012, Vol.37, pp. 7212-7220.
[33] Li, Q., Ronghuan, H., Ji-An, G., Jensen, J.O., Bjerrum, N.J., “The CO Poisoning Effect In Pemfcs Operational At Temperatures Up To 200°C,” J. Electrochem Soc, 2003, Vol.150, pp. A1599-A1605.
[34] Bhatia, K.K., Wang, C.Y., “Transient Carbon Monoxide Poisoning Of A Polymer Electrolyte Fuel Cell Operating On Diluted Hydrogen Feed,” Electrochimi. Acta, 2004, Vol.49, pp. 2333–2341.
[35] Susanta, K. Das, Antonio, Reis, Berry, K.J., “Experimental Evaluation Of CO Poisoning On The Performance Of A High Temperature Proton Exchange Membrane Fuel Cell,” J. Power Source, 2009 Vol.193, pp. 691–698
[36] Bose Saswata, Kuila Tapas, Xuan Hien Nguyen Thi, Hoon Kim Nam, Lau Kin-tak, Lee Joong Hee, “Polymer Membranes For High Temperature Proton Exchange Membrane Fuel Cell: Recent Advances And Challenges,” Prog. Polym Sci. 2011, Vol. 36, pp.813-843.
[37] Kwon, K., Yoo D.Y., Park, J.O., “Experimental Factors That Influence Carbon Monoxide Tolerance Of High-Temperature Proton Exchange Membrane Fuel Cells,” J. Power Sources. 2008, Vol. 185, pp. 202-206.
[38] Chen, C.Y., Lai, W.-H., Chen, Y.-K., Su. S.-S., “Characteristic Studies Of A PBI/H3PO4 High Temperature Membrane PEMFC Under Simulated Reformate Gases,” Int. J. Hydrogen Energy. 2014, Vol.39, pp. 13757–13762
[39] Diard, J.P., Glandut, N., Landaud, P., Gorrec, B.L., Montella, C., “A Method For Determining Anode And Cathode Impedances Of A Direct Methanol Fuel Cell Running On A Load,” Electrochimica Acta. 2003, Vol.48, pp. 555-62.
[40] Lang, M., Auer, C., Eismann, A., Szabo, P., Wagner, N., “Investigation Of Solid Oxide Fuel Cell Short Stacks For Mobile Applications By Electrochemical Impedance Spectroscopy,” Electrochimi Acta. 2008, Vol.53(25), pp. 7509-13.
[41] Yang, S.H., Chenb, C.Y., Wang, W.J., “An Impedance Study For The Anode Micro-Porous Layer In An Operating Direct Methanol Fuel Cell,” J. Power Source. 2010, Vol.195(11), pp. 3536-45.
[42] Andreasen, S.J., Vang, J.R., and Kaer, S.K., “High Temperature PEM Fuel Cell Performance Characterisation with CO and CO2 Using Electrochemical Impedance Spectroscopy,” Int. J. Hydrogen Energy, 2011, Vol. 36, pp.9815-9830.
[43] Chen, C.Y., Lai, W.H., “Effects Of Temperature And Humidity On The Cell Performance And Resistance Of A Phosphoric Acid Doped Polybenzimidazole Fuel Cell,” J. Power Source, 2010, Vol.195, pp. 7152–7159.
[44] Thomassen, M., Sheridan, E., Kvello, J., “Electrochemical Hydrogen Separation And Compression Using Polybenzimidazole (PBI) Fuel Cell Technology,” Journal of Natural Gas Science and Engineering, 2010, Vol. 2, pp. 229-234.
[45] Bhatia, K.K., Wang, C.Y., “Transient Carbon Monoxide Poisoning Of A Polymer Electrolyte Fuel Cell Operating On Diluted Hydrogen Feed,” Electrochimi Acta, 2004, Vol.49, pp. 2333–2341.
[46] Yan, W.M., Chu, H.S., Lu, M.X., Weng, F.B., Jung, G.B., Lee, C.Y., “Degradation Of Proton Exchange Membrane Fuel Cells Due To CO And CO2 Poisoning,” J. Power Source, 2009, Vol.188, pp. 141–147.
[47] Osaki, T., Narita, N., Horiuchi, T., Sugiyama, T., Masuda, H., Suzuki, K., “Kinetics Of Reverse Water Gas Shift ( RWGS) Reaction On Metal Disulfide Catalysts,” Journal Of Molecular Catalysis A: Chemical, 1997, Vol.125, pp. 63–71.
[48] Wagner, N. and Schulze, M., “Change Of Electrochemical Impedance Spectra During CO Poisoning Of The Pt And Pt_/Ru Anodes In A Membrane Fuel Cell (PEFC),” Electrochimi. Acta, 2003, Vol.48, pp. 3899-3907.
[49] Zhang, J. and Datta, R., “Online Monitoring of Anode Outlet CO Concentration in PEM Fuel Cells,” Electrochem. Solid-State Lett., 2003, Vol.6, pp.A5-A8.
[50] EG&G ServicesI. Parson, Fuel Cell Handbook, U.S. Department of Energy, Morgantown, WV, 2000.
[51] Blomen, L.J.M., Mugerwa, M.Ne., Fuel Cell Systems, Plenum Press, New York, 1993.
[52] Bokris, J.O.M., Srinivasan, S., Fuel Cells: Their Electrochemistry, McGraw Hill, New York, 1969.
[53] Carrette, L., Friedrich, K.A., Stimming, U., “Fuel Cells: Principles, Types, Fuels, And Applications,” Chemphyschem , 2000, Vol.4, pp 162–193.
[54] Srinivasan, S. Blomen, Mugerwa (Eds.) M.N., Overview of Fuel Cell Technology, Plenum Press, New York, 1993, pp. 37–72.
[55] Weber, A.Z., Newman, J., “Modeling Transport In Polymer-Electrolyte Fuel Cells,” Chem. Rev. 2004, Vol. 104, pp. 4679–4726.
[56] Jintao Zhang , Zhenhai Xia Liming Dai, “Carbon-Based Electrocatalysts For Advanced Energy Conversion And Storage,” 2015, Vol. 1, pp. e1500564
[57] Wu, J.F., Yuan, X.Z., and Wang, H.J., ”Cyclic Voltammetry”. In PEM Fuel Cell Diagnostic Tools; Ed.; Wang, Haijiang, Yuan, Xiao-Zi and Li, Hui. CRC Press: Boca Raton, FL, 2012; pp 71-84.
[58] https://www.gamry.com/
[59] Castro, E.B., Cuscueta, D.J., Milocco, R.H., Ghilarducci, A.A., Salva, H.R., “An EIS Based Study Of A Ni–MH Battery Prototype. Modeling And Identification Analysis,” Int. J. Hydrogen Energy. 2010,Vol. 35(11), pp. 5991-8.
[60] Zhang, S.S., Xu, K., Jow, T.R., “EIS Study On The Formation Of Solid Electrolyte Interface In Li-Ion Battery,” Electrochimi Acta. 2006, Vol. 51(8-9), pp. 1636-40.
[61] Aurbach, D., Markovsky, B., Weissman, I., Levi, E., Ein-Eli Y., “On The Correlation Between Surface Chemistry And Performance Of Graphite Negative Electrodes For Li Ion Batteries,” Electrochimi Acta. 1999, Vol.45(1-2), pp.67-86.
[62] Yuan, X.Z., Song, C., Wang, H., Zhang, J., Electrochemical Impedance Spectroscopy in PEM Fuel Cells : Fundamentals and Applications: Springer 2010.
[63] Zhu, W.H., Payne, R.U., Tatarchuk, B.J., “PEM Stack Test And Analysis In A Power System At Operational Load Via Ac Impedance,” J. Power Source. 2007, Vol. 168, pp. 211-7.
[64] Korsgaard, A.R., Refshauge, R., Nielsen, M.P., Bang, M., and Kaer, S.K., “Experimental Characterization and Modeling of Commercial Polybenzimidazole-based MEA Performance,” J. Power Source, 2006, Vol. 162, pp.239-245.
[65] Li, Q.F., He, R.H., Gao, J.A., Jensen, J.O., and Bjerrum, N.J., ”The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200 Degrees C,” J. Electrochem Soc, 2003, Vol. 150, pp. A1599-A1605.
[66] Zhang, J. and Datta, R., “Online Monitoring of Anode Outlet CO Concentration in PEM Fuel Cells,” Electrochem. Solid-State Lett., 2003, vol.6, pp. A5-A8.
[67] Zhang, J., and Datta, R., “Sustained Potential Oscillations in Proton Exchange Membrane Fuel Cells with PtRu as Anode Catalyst,” J. Electrochem. Soc., 2002, vol.14, pp. A1423-1431.
[68] Zhang, J. and Datta, R., “Mechanistic and Bifurcation Analysis of Anode Potential Oscillations in PEMFCs with CO in Anode Feed,” J. Electrochem. Soc., 2004, vol.151, pp. A689-A697.
[69] Chen, C.Y., Lai, W.H., Yan, W.M., Chen, C.C., Hsu, S. W. “Effects Of Nitrogen And Carbon Monoxide Concentrations On Performance Of Proton Exchange Membrane Fuel Cells With Pt–Ru Anodic Catalyst,” J. Power Sources. 2013, Vol. 243, pp. 138-46.
[70] Springer, T.E., Rockward, T., Zawodzinski, T.A., Gottesfeld, S., “Model For Polymer Electrolyte Fuel Cell Operation On Reformate Feed - Effects Of CO, H2 Dilution, And High Fuel Utilization,” J. Electrochem Soc. 2001, Vol. 148(1), pp. A11-23.
[71] Thampan, T., Jalani, N.H., Choi, P., Datta, R., “Systematic Approach To Design Higher Temperature Composite PEMS,” J. Electrochem. Soc. 2005, Vol. 152 (2), pp. A316-A325.
[72] Jalani, N.H., Ramani, M., Ohlsson, K., Buelte, S., Pacifico, G., Pollard, R., Staudt, R., Datta. R., “Performance Analysis And Impedance Spectral Signatures Of High Temperature PBI–Phosphoric Acid Gel Membrane Fuel Cells,” J. Power Source, 2006, Vol. 160, pp. 1096-1103
[73] Oetjen, H.F., Schmidt, V.M., Stimming, U., Trila, F., “Performance Data Of A Proton Exchange Membrane Fuel Cell Using H2/CO As Fuel Gas,” J. Electrochem Soc, 1996, Vol. 143 (12), pp. 3838–3842
[74] Li, R., He, J.A., Gao, J.O., Jensen, N.J., Bjerrum, “The CO Poisoning Effect In Pemfcs Operational At Temperatures Up To 200°C,” J. Electrochem Soc, 2003, Vol. 150 (12), pp. A1599–A1605
[75] Zhenyu Liu, Jesse S.Wainright, Robert F., Savinell, “High-Temperature Polymer Electrolytes For PEM Fuel Cells: Study Of The Oxygen Reduction Reaction (ORR) At A Pt–Polymer Electrolyte Interface,” Chem. Eng. Sci., 2004, Vol. 59, pp. 4833-38
[76] Hwang, J.J., Chao, C.H., “Species-Electrochemical Transports In A Free-Breathing Cathode Of A PCB-Based Fuel Cell,” Electrochimica Acta. 2007, Vol. 52, pp. 1942–50.
[77] Chen, C.Y., Lai, W.H., Weng, B.J., Chuang, H.J., Hsieh, C.Y. Kung C.C., “Planar Array Stack Design Aided By Rapid Prototyping In Development Of Air-Breathing PEMFC,” J. Power Source. 2008, Vol. 179, pp. 147-54.
[78] Chen, C.Y., Y.C., Wen, Lai, W.H., Chou, M.C., Weng, B.J., Hsieh, C.Y., et al, “Fast Design And Manufactured On Complex Flow Channel By Rapid Prototyping For Air-Breathing Polymer Electrolyte Membrane Fuel Cells,” ASME, 2006, pp 1209-1216
[79] Shimpalee, S., Beuscher, U., Zee, JWV., “Investigation Of Gas Diffusion Media Inside PEMFC Using CFD Modeling. J. Power Source,” 2006, Vol. 163(1), pp. 480-9.
[80] Shimpalee, S., Spuckler, D., Zee, JWV., “Prediction Of Transient Response For A 25 Cm2 PEM Fuel Cell,” J. Power Source. 2007, Vol. 167(1), pp. 130-8.
[81] Zhang, L., Liu, Y., Song, H., Wang, S., Zhou, Y., Hu, S.J., “Estimation Of Contact Resistance In Proton Exchange Membrane Fuel Cells,” J. Power Source. 2006, Vol. 162, pp. 1165–71.
[82] Zhou, P., Wu, C.W., Ma, G.J., “Contact Resistance Prediction And Structure Optimization Of Bipolar Plates,” J. Power Source. 2006, Vol. 159, pp. 1115–22.
[83] Wu, Z., Zhou, Y., Lin. G., Wang. S., Hu. S.J.. “An Improved Model For Predicting Electrical Contact Resistance Between Bipolar Plate And Gas Diffusion Layer In Proton Exchange Membrane Fuel Cells,” J. Power Source. 2008, Vol. 182, pp. 265–9.
[84] He, R., Li, Q., Xiao, G., Bjerrum, N.J., “Proton Conductivity Of Phosphoric Acid Doped Polybenzimidazole And Its Composites With Inorganic Proton Conductors,” Journal of Membrane Science. 2003, Vol. 226, pp. 169-84.
[85] Authayanun, S., Arpornwichanop, A., Patcharauorachot, Y., Wiyaratn, W.,and Assabumrungrat, S., “Hydrogen Production from Glycerol Steam Reforming for Low- and High-temperature PEMFCs,” Int. J. Hydrogen Energy, 2011, Vol. 36, pp.267-275.
[86] Radu, R., Zuliani, N., and Taccani, R., “Design and Experimental Characterization of a High-Temperature Proton Exchange Membrane Fuel Cell Stack,” Journal of Fuel Cell Science and Technology, 2011, Vol. 8, pp. 050117
[87] Holladay, J.D., Wainright, J.S., Jones, E.O., and Gano, S.R., “Power Generation Using a Mesoscale Fuel Cell Integrated with a Microscale Fuel Processor,” J. Power Source, 2004, Vol. 130, pp.111-118.
[88] Zhang, J.L., Xie, Z., Zhang, J.J., Tanga, Y.H., Song, C.J., Navessin, T., Shi, Z.Q., Song, D.T., Wang, H.J., Wilkinson, D.P., Liu, Z.S., and Holdcroft, S., “High Temperature Pem Fuel Cells,” J. Power Source, 2006, Vol. 160, pp.872-891.
[89] Ma, Y.L., Wainright, J.S., Litt, M.H., Savinell, R.F., “Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells,” J. Electrochem Soc. 2004, Vol. 151(1), pp. A8-A16.
[90] Li, Q., He, R., Berg, R.W., Hjuler, H.A., Bjerrum, N.J., “Water Uptake And Acid Doping Of Polybenzimidazoles As Electrolyte Membranes For Fuel Cells,” Solid State Ionics. 2004, Vol. 168, pp. 177-85.
[91] Daletou, M.K., Kallitsis, J.K., Voyiatzis, G., Neophytides, S.G., “The Interaction Of Water Vapors With H3PO4 Imbibed Electrolyte Based On PBI/Polysulfone Copolymer Blends,” Journal of Membrane Science. 2009, Vol. 326, pp. 76-83.
[92] Zhang, J., Thampan, T., Datta R., “Influence Of Anode Flow Rate And Cathode Oxygen Pressure On CO Poisoning Of Proton Exchange Membrane Fuel Cells,” J. Electrochem Soc. 2008, Vol.149(6), A765-72
[93] Chen, C.Y., Huang, K.P., Yan, W.M., Lai, M.P. and Yang, C.C., “Development And Performance Diagnosis Of A High Power Air-Cooled PEMFC Stack,” Int. J. Hydrogen Energy, 2016, Vol. 41, pp. 11784-93.
[94] Philip, L., Hentalla, J.,Barry Lakemana, Gary O. Mepsteda, , Paul L. Adcockb, Jon M. Mooreb, “New Materials For Polymer Electrolyte Membrane Fuel Cell Current Collectors,” J. Power Source. 1999, Vol. 80, pp. 235-241
[95] Kumar, A., Reddy, R. G., “Fundamentals of Advanced Materials for Energy Conversion Proceedings,” Eds. D. Chandra and R. G. Bautista, Seatle, USA, Feb. 17-21, 2002, p. 41.
[96] Xiao, Zi., Yuan, H.J., Wang, J.J., Zhang, David, P., Wilkinson., “Bipolar Plates for PEM Fuel Cells - From Materials to Processing,” J. New. Mat. Electrochem. Systems. 2005, pp 257-267
[97] Shahram Karimi, Norman Fraser, Bronwyn Roberts, Frank R. Foulkes, “A Review ofMetallic Bipolar Plates for Proton Exchange Membrane Fuel Cells:Materials and FabricationMethods,” Advances in Materials Science and Engineering, 2012, Vol. 2012, pp. 828070
[98] Ma, L., Warthesen, S., and Shores, D. A., “Evaluation Of Materials For Bipolar Plates In Pemfcs,” Journal of New Materials for Electrochemical Systems, 2000, Vol. 3, No. 3, pp. 221–228
[99] Joseph, S., McClure, J. C., Chianelli, R., Pich, P., and Sebastian, P. J., “Conducting Polymer-Coated Stainless Steel Bipolar Plates For Proton Exchange Membrane Fuel Cells (PEMFC),” Int. J. Hydrogen Energy, 2005, Vol. 30, No. 12, pp. 1339–1344
[100] Garc´ıa, M. A. L. and Smit, M. A., “Study Of Electrodeposited Polypyrrole Coatings For The Corrosion Protection Of Stainless Steel Bipolar Plates For The PEM Fuel Cell,” J. Power Source, 2006, Vol. 158, No. 1, pp. 397–402
[101] Tian, R., Sun, J., and Wang, L., “Plasma-Nitrided Austenitic Stainless Steel 316L As Bipolar Plate For PEMFC,” Int. J. Hydrogen Energy, 2006, Vol. 31, No. 13, pp. 1874–1878
[102] Wang Y., and Northwood, D. O., “An Investigation Into Tincoated 316L Stainless Steel As A Bipolar Plate Material For PEM Fuel Cells,” J. Power Source, 2007, Vol. 165, No. 1, pp. 293–298
[103] http://hyperphysics.phy-astr.gsu.edu/hbase/Chemical/corrosion.html
[104] Pinar, F.J., Rastedt, M., Pilinski, N., Wagner, P., Dyck, A., “Demonstrating Feasibility Of A High Temperature Polymer Electrolyte Membrane Fuel Cell Operation With Natural Gas Reformate Composition,” Int. J. Hydrogen Energy, 2017, Vol. 42, pp. 13860-13875.
[105] Wei, A, Schindler, S., Galbiati, S., Danzer, M.A., Zeis, R., “Distribution Of Relaxation Times Analysis Of High-Temperature PEM Fuel Cell Impedance Spectra,” Electrochimi Acta, 2017, Vol. 230, pp. 391-398.
[106] Kaserer, S., Rakousky, C., Melke, J., Roth, C., “Design Of A Reference Electrode For High-Temperature PEM Fuel Cells,” J. Appl. Electrochem, 2013, Vol. 43, pp. 1069-1078.
校內:2022-01-01公開