| 研究生: |
康勝傑 Kang, Sheng-Jie |
|---|---|
| 論文名稱: |
以值積元素法分析含矩形缺口之矩形Mindlin平板的動態特性 Vibration Analysis of Rectangular Mindlin Plates with Rectangular Openings by the Quadrature Element Method |
| 指導教授: |
崔兆棠
Choi, Siu-Tong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | Mindlin平板 、值積元素法 |
| 外文關鍵詞: | QEM, Mindlin plate |
| 相關次數: | 點閱:61 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主旨在於利用值積元素法(Quadrature Element Method)來分析含矩形缺口之矩形Mindlin平板的動態行為。首先應用微分值積轉化規則,推導矩形Mindlin平板元素的離散化代數方程式;再經由元素的接合,得到系統的離散化代數方程式。本文求解矩形、L形及U形平板在不同邊界條件下的自然頻率,並與有限元素法的結果做比較。由分析結果顯示,應用微分值積元素法在具有矩形缺口之矩形Mindlin平板的振動分析上,可以得到準確的結果。
In this thesis, the dynamic characteristics of rectangular Mindlin plates with rectangular openings is investigated by using the quadrature element method (QEM). First, we apply the formulation of differential quadrature to obtain the discrete algebraic governing equations of Mindlin plate elements, which are then assembled to get the discrete equations for the entire plate. Natural frequencies of rectangular, L-shaped and U-shaped plates with different boundary conditions are obtained, and compared with those obtained by the finite element method. Numerical results show the high accuracy and efficiency of the QEM for vibration analysis of rectangular Mindlin plates with rectangular openings.
Bellman, R. E., and Casti, J., “Differential Quadrature and Long-term Integration,” Journal of Mathematical Analysis and Application, Vol. 34, pp. 235-238, 1971.
Bert, C. W., Jang, S. K., and Striz, A. G., “Two New Approximate Methods for Analyzing Free Vibration of Structural Components,” AIAA Journal, Vol. 26, pp. 612-618, 1988.
Bert, C. W., Wang, X., and Striz, A. G., “Static and Free Vibrational Analysis of Beams and Plates by Differential Quadrature Method,” Acta Mechanics, Vol. 102, pp. 11-24, 1994.
Bert, C. W., and Malik, M., “Differential Quadrature Method in Computational Mechanics: A Review,” ASME Applied Mechanics Review, Vol. 49, pp. 1-28, 1996.
Bert, C. W., and Malik, M., “Free Vibration Analysis of Tapered Rectangular Plates by Differential Quadrature Method: A Semi-analytical Approach,”Journal of Sound and Vibration, Vol. 190, pp. 41-63, 1996.
Choi, S.-T., and Chou, Y.-T., “Vibration Analysis of Elastically Supported Turbomachinery Blades by the Modified Differential Quadrature Method,” Journal of Sound and Vibration, Vol. 240, pp. 937-953, 2001.
Civan, F., and Sliepcevich, C. M., “Differential Quadrature for Multi-Dimensional Problems,” Journal of Mathematical Analysis and Application, Vol. 101, pp. 423-443, 1984.
FEMLAB Structural Mechanics Module, Version 2.3, COMSOL AB., Stockholm, Sweden, 2002.
Kanaka Raju, K., and Hinton, E., “Natural Frequencies and Modes of Rhombic Mindlin Plates,” Earthquake Engineering and Structural Dynamics, Vol. 8, pp. 55-62, 1980.
Leissa, A. W., “The Free Vibration of Rectangular Plates,” Journal of Sound and Vibration, Vol. 31, pp. 257-293, 1973.
Liew, K.M., Hung, K. C., and Lim, M. K., “Roles of Domain Decomposition Method in Plate Vibrations: Treatment of Mixed Discontinuous Periphery Boundaries ,” International Journal of Mechanical Science, Vol. 35, pp. 615-632, 1993a.
Liew, K. M., Xiang, Y., and Kitipornchai, S., “Transverse Vibration of Thick Rectangular Plates―I. Comprehensive Sets of Boundary Conditions,” Computers and Structures, Vol. 49, pp. 1-29, 1993b.
Liu, F.-L., and Liew, K. M., “Static Analysis of Reissner-Mindlin Plates by Differential Quadrature Element Method,” Journal of Applied Mechanics, Vol. 65, pp. 705-710, 1998.
Liu, F.-L., and Liew, K. M., “Analysis of Vibrating Thick Rectangular Plates with Mixed Boundary Constraints Using Differential Quadrature Element Method,” Journal of Sound and Vibration, Vol. 225, pp. 915-934, 1999.
Malik, M., and Bert, C. W., “Implementing Multiple Boundary Conditions in the DQ Solution of Higher Order PDE’s: Application to Free Vibration of Plates,” International Journal for Numerical Methods in Engineering, Vol. 39, pp. 1237-1258, 1996.
Shu, C., and Richards, B. E., “Application of Generalized Differential Quadrature to Solve Two-dimensional Incompressible Navier-Stokes Equations,” International Journal for Numerical Methods in Fluids, Vol. 15, pp. 791-798, 1992.
Wang, X., Bert, C. W., and Striz, A. G., “Differential Quadrature Analysis of Deflection, Buckling, and Free Vibration of Beams and Rectanglar Plates,” Computers and Structures, Vol. 48, pp. 473-479, 1993.
Wang, X., and Bert, C. W., “A New Approach in Applying Differential Quadrature to Static and Free Vibrational Analyses of Beams and Plates,” Journal of Sound and Vibration, Vol. 162, pp. 566-572, 1993.
Yuan, J., and Dickinson, S. M., “The Flexural Vibration of Rectangular Plate Systems Approached by Using Artificial Springs in the Rayleigh-Ritz Method,” Journal of Sound and Vibration, Vol. 159, pp. 39-55, 1992.
周玉端, 民國2000年六月 , “改良型微分值積法及其元素法於結構力學之應用,” 國立成功大學博士論文。
劉鈞旻, 民國2001年六月 , “應用值積元素法於轉子軸承系統之動態分析,” 國立成功大學碩士論文。
黃俊智, 民國2002年六月 , “微分值積元素法於Mindlin平板之振動分析,” 國立成功大學碩士論文。