| 研究生: |
陳韋伶 Chen, Wei-Ling |
|---|---|
| 論文名稱: |
表面鍍銅改良碳纖維/環氧樹脂熱傳導性質之研究 The Investigation of The Thermal Conductivity in Cu-Deposited Carbon/Epoxy Composites |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 碳纖維/環氧樹脂 、銅膜 、物理氣相沈積 、熱傳導 、有效熱傳導係數 |
| 外文關鍵詞: | Effective thermal conductivity, Copper film, Carbon fiber/epoxy composite, Thermal conduction, PVD |
| 相關次數: | 點閱:116 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
纖維強化高分子複合材料(Fiber-reinforced Polymer Composites)為目前重要的熱管理材料(Thermal management materials)之一,其優點是質輕易加工,但缺點則是由於纖維的存在導致熱傳導的異向性。鑑於此,本研究以物理氣相沈積法(PVD)將銅膜鍍於碳纖維/環氧樹脂複合基材表面,期望藉此改進基材之熱傳導性。
本實驗將銅膜濺鍍於不同碳纖維方向及不同厚度的複合基材上,以雷射閃光(Laser Flash)測量其熱傳導係數,並以理論公式計算出有效熱傳導係數(Keff),作為比較。在偏壓為-90V的濺鍍條件下,銅膜有最佳的附著性質及較低的電阻係數,故以其為最佳濺鍍條件。
對於複合基材而言,碳纖維的方向對基材的熱傳導影響很大。碳纖維軸方向平行於熱傳遞方向之基材(S⊥)有較佳的熱傳導係數,且隨著鍍於表面的銅膜厚度越厚,熱傳導係數越高。若於厚度各為1mm及3mm的此種基材(碳纖維軸方向與熱傳遞方向平行)表面鍍上0.5、3、10、20、40μm的銅膜,則發現隨著銅膜厚度越厚,基材的熱傳導係數皆越高且兩基材整體的熱傳導係數相近,唯獨當膜厚為40μm時,1mm的基材整體之熱傳導係數較高,為5.5W/mk,比基材本身的熱傳導係數提高了54%,且達有效熱傳導係數之60%。因此,於複合材料表面鍍銅膜,對於幫助整體熱傳導值的提昇是有明顯助益的。
Carbon Fiber/epoxy composite is one of the important thermal management materials but its disadvantages are relatively low thermal conductivity. In order to resolve this problem, physical vapor deposition (PVD) process was used to deposit copper films on carbon fiber/epoxy composite in this work.
The substrates have different thickness and fiber direction, and copper film was deposited on them in different film thickness. The thermal conductivity (K) of the substrates and the as-deposited samples is measured by laser flash and compared with the theoretical effective thermal conductivity (Keff).
The experimental result revealed that copper films would have good adhesion with the substrate and lower electrical resistivity by sputtering with bias voltage of -90V, so, it was the best sputtering condition.
The results also showed that the thermal conductivity of the substrate with fiber axis paralleling to heat flow (S⊥) will be as good as 3.6W/mk. With film thickness up to 40μm , it would increase to 4.91 W/mk. When the thickness of S⊥ decrease to 1mm, the K value would become 5.5W/mk which was 60% of the Keff value and increase 54% of the thermal conductivity of S⊥ itself.
1. 陳俊民,"漫談高分子複合材料",石油季刊,第二十二卷第一期
2. 莊達人,"VLSI製造技術”,高立圖書有限公司
3. 神戶德藏著,莊萬發譯,"無電解鍍金-化學鍍金技術",復漢出版社
4. J.A. Thorton, “Plasma-Assisted Deposition Processes:Theory, Mechanisms and Applications”, Thin Solid Films, 107, 3,(1983)
5. M.R. Hilton, L.R. Narasimhan, S. Nakamura, M. Salmeron and G.A. Somorjai, "Composition, Morphology and Mechanical Properties of PACVD TiN Films on M2 Tool Steel”, Thin Solid Films, 139, (1986) p.247
6. H.P.W. Hey, B.G. Sluijk and D.G. Hemmes, “Ion Bombardment:A Determining Factor in Plasma CVD”, Solid State Technology, Apr. p.139-144, (1990).
7. R.D. Bland, G.J. Kominiak and D.M. Mattox, “Effect of Ion Bombardment during Deposition on Thick Metal and Ceramic Deposites”, J.Vac.Sci. Technol., 11(4) (1974) p.671-674.
8. D. P. H. Hasselman, Lloyd F. Johnson, “Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance,” J. Comp. Mat., Vol 21(1987) p.508-515.
9. Seiichi Nomura, Tsu-Wei Chou, “Bounds of Effective Thermal Conductivity of Short-Fiber Composites,” J. Comp. Mat, 14(1980), p.120-129.
10. M. Rosochowska, R Balendra, K. Chodnikiewicz, “Measurements of Thermal contact conductance,” Journal of Materials Processing Technology 135(2003) 204-210.
11. Wasa, “Handbook of Sputter Deposition Technology”, (1992), 98
12. M. Rossnagel et al., “Handbook of Plasma Processing Technology’, Noyes Publications, Park Ridge, New Jersey, U.S.A.,1982
13. Brian Chapman, ”Glow Discharge Processes”, John Wiley and Sons,New York,1980
14. John A. Thornton, “Influnce of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings”, J. Vac. Sci.Technol., 11 (4) (1974) p.666-670
15. Incropera, DeWitt, “Fundamentals of Heat and Mass Transfer 4/e”
16. C.T. Pan, H. Hocheng, “Evaluation of anisotropic thermal conductivity for unidirectional FRP in laser mashing,” Composites: Part A, 32(2001) 1657-1667.
17. Lord Rayleigh, “On the Influence of Obstacles Arranged in Rectangular Order Upon thr Properties of a Medium,” Phil. Mag., 34:841(1982).
18. Maxwell, J. C. A Treatise on Electricity and Magnetism, 1 3rd ed., Oxford University Press(1904).
19. Warren M. Rohsenow, James P. Hartnett, “Handbook of Heat Transfer,” 1973.
20. H.F.Winters and E. Kay, J.Appl.Phys., 43(1972) p.794-796
21. P.Sigmund,Phys.Rev.,184(1969),p.383
22. D.M.Mattox, in, “Deposition Technologies for films and coatings”,charp.6, editor R.F.
23. H. Qiu et al, “Structural and electrical properties of Cu films deposited on glass by DC magnetron sputtering.” Vacuum, 66(2002) p.447-452.
24. W. Ensinger, “Growth of Thin Films with Preperential Crystallographic Orientation by Ion Bombardment during Deposition”, Surface and Coatings Technology 65 (1994) p.90-105.
25. M. Marinov, “Effect of Ion Bombardment on Initial Stages of Thin Film Growth”, Thin Solid Films, 46(1977) p.267-274.
26. G. I. Grigorov, I. N. Martev and K.K. Tzatzov, “Stimulation of Sorption on Metal Films by Means of Radiation Defect”, Thin Solid Films, 76(1981) p.269-272.
27. Jindrich Musil, Vlastimil Jezek, Marcel Benda, Milan Kubasek, Dagmar Jandova and Jarsolav Vlcek, Fizika A 4(1995)2, p.343-349.
28. David W. Yarbrough, “Thermal Conductivity 19”, 1985.
29.Delhi, “Thermal Conductivity of Copper Films”, 20(1974) p.53-62.