簡易檢索 / 詳目顯示

研究生: 吳建勳
Wu, Jian-Xun
論文名稱: 受束制之移動最小二乘法在二維彈性力學問題上之應用
Constrained Moving Least Square Method for Planar Elasticity Problem
指導教授: 王永明
Wang, Yung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 88
中文關鍵詞: 受束制之移動最小二乘法二維彈性力學位移與應力分析
外文關鍵詞: Constrained Moving Least Square, Two-dimensional elasticity, Displacement and stress analysis
相關次數: 點閱:53下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文採用了受束制之移動最小二乘法(Constrained Moving Least Square Method)來分析二維彈性力學之相關問題。此一數值方法之特色為,在利用移動最小二乘法建立局部近似函數的同時加入限制,令其滿足控制方程式與邊界條件,使模擬出之函數值或其各階導數,均可滿足對應的微分方程式與邊界條件。
    文中模擬了懸臂樑受剪力與受拉力作用,開孔無限板受拉力作用等問題,透過不同的基底階數、佈點數與佈點方式等因素,討論此數值方法之適用性,並與解析解相比較,分析其收斂率與誤差,以驗證本文所使用數值方法之正確性。

    In this thesis, we use the constrained moving least square method is used to solve the planar elasticity problems. The novelty of this approach is that, we appropriate constraints into the moving least square method , so that it satisfy the governing equations and boundary conditions. So that the approximate function satisfy the governing equations and boundary conditions.
    Using the present method, we simulate the cantilever beam loaded by shear and tensile force and the infinite plate with a hole loaded by the tensile force. In the example, we use different order of the base functions, different number of points and different point distributions to discuss the applicability of this method, and compare the numerical result with the exact solution to examine the accuracy and the rate of convergence of this method.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1前言 1 1.2無元素法之發展 1 1.3論文架構 3 第二章 彈性力學公式推導 5 2.1 二維彈性力學分析 5 2.2 均向性材料之彈性係數 9 2.3 邊界條件設定 11 第三章 受束制之移動最小二乘法理論推導 13 3.1 受束制之移動最小二乘法理論推導 13 3.2基底函數 16 3.3鄰近點與加權函數 16 第四章 數值分析之結果 17 4.1 Timoshenko邊界假設下之懸臂樑受剪力作用 17 4.2懸臂梁受剪力作用 19 4.3懸臂梁受均勻拉力作用 20 4.4開孔無限板受拉力作用 21 4.4.1採用均勻佈點 23 4.4.2採用部分均勻佈點 24 4.4.3採用非均勻佈點 25 第五章 結論 27 參考文獻 29

    [1] L. B. Lucy, A numerical approach to the testing of the fission hypothesis,The Astron, J.8, 12, 1013-1024 (1977).

    [2] B. Nayroles, G. Touzot and P. Villon, Generalizing the finite element method diffuse approximation and diffuse elements, Computationl Mechanics, 10, 307-318 (1992).

    [3] T. Belytschko, L. Gu and Y. Y. Lu, Fracture and crack growt by element-free Galerkin methods, Modeling and Simulation in Materials Science and Engineering, 2, 519-534 (1994)

    [4] W. K. Liu, S. Jun and Y. F. Zhang, Reproducing kernel particle methods,Int. J. Numerical methods Engineering, 20, 1081-1106 (1995).

    [5] J. S. Chen, C.T. Wu and W.K. Liu, Reproducing kernel particle methods for large deformation analysis of non-linear structures, Computer methods in Applied Mechanics And Engineering, 139, 195-227. (1996).

    [6] E. Oñate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor and C. Sacco, A stabilized finite point method for analysis of fluid mechanics problems,Computer Methods in Applied Mechanics & Engineering, 139, 315-346(1996).

    [7] T. Zhu, J,D, Zhang, S.N. Atluri, A Meshless Local Boundary Integral Equation (LBIE) Method for solving Nonlinear Problems, Computational Mechanics, 22, 174-186(1998)

    [8] S.N. Atluri, T. Zhu, A New Meshless Local Petrov-Galerkin (MLPG) Approach in Computational Mechanics, Computational Mechanics, 22, 117-127 (1998)

    [9] S.Li, W. Hao and W. K. Liu, Numerical simulation of large deformation of thin shell structures using meshfree methods, Computational Mechanics,25,102-116 (2000)

    [10] G. J. Wnger and W. K. Liu, Turbulence simulation and multiple scale subgrid models, Computational Mechanics, 25, 117-136 (2000)

    [11] 盛若磐, 元素釋放法積分法則與權函數之改良, 近代工程計算論壇論
    文集, 國立中央大學土木系, 2000.

    [12] S.N. Atluri, T. Zhu, A New Meshless Local Petrov-Galerkin (MLPG) approach for solving problem in elasto-static, Computational Mechanics, 25, 169-179 (2000),

    [13] Xiong Zhang, Xiao-Hu Liu, Kang-Zu Song and Ming-Wan Lu,
    Least-square collocation meshless method, 51 ,1089-1100 (2001)

    [14] Jianming Zhang, Zhenhan Yao, Masataka Tanaka, The meshless reualar hybrid boundary node method for 2D linear elasticity, Engineering analysis with boundary element, 27, 259-268 (2003)

    [15] Y.Q Hunag, Q.S. Li, Bending and buckling analysis of antisymmetric laminates using the moving least square differential quadrature method, 193, 3471-3492 (2004)

    [16] Zhiqiang Cai, Gerhard Starke, Least-Square method for linear elasticity siam J, numer, anal, vol 42, 826-842 (2004)

    [17] G.R.Liu, G.Y.Zhang, K.Y.Dai, Y.Y.Wang, Z.H.Zhong, G.Y.Li, X.Han A linearly conforming point interpolation method for 2d solid mechanics problems, world scicntific, 645-665 (2005)

    [18] 翁啟照, 無元素葛勒金法在二維彈力之應用,國立成功大學土木工程
    研究所, (2008)

    [19] 邱帝凱, 無元素葛勒金法於二維彈性動力分析,國立成功大學土木工
    程研究所, (2008)

    [20] Amir Khosravifard, Mohammad Rahim Hematiyan, A new method for meshless integration in 2d and 3d Galerkin meshfree methods, Engineering analysis with boundary element, 34, 30-40 (2010)

    [21] Y.M.Wang, S.M.Chen, C.P.Wu, A meshless collocation method based on the differential reproducing kernel interpolation, computational mechanics, 45, 585-606 (2010)

    [22] S.W.Yang, Y.M.Wang, C.P.Wu, H.T.Hu, A meshless collocation method based on the differential reproducing kernel approximation, computational mechanics, 60, 1-39 (2010)

    [23] S.M.Chen, C.P.Wu, Y.M.Wang, A hermite DRK interpolation-based collocation method for the analyses of Bernoulli-Euler beams and Kirchhoff-Love plate,computational mechanics, 47,425-543 (2011)

    [24] P.H.Wen, M.H.Aliabadi, A hybrid finite difference and moving least square method for elasticity problems, Engineering analysis with boundary element, 36, 600-605 (2012)

    [25] 黃建碩, 移動最小二乘法, 國立成功大學土木工程研究所, 2010

    [26] 楊佳蓉, 齊次基底移動最小二乘法在二維彈性力學上之應用, 國立成
    功大學土木工程研究所,( 2011)

    [27] T. Belyschko, Y. Krongkuz, D. Oragn, M. Feleming & P. Krysl, Meshless methods: An overview and recent devwlopment, Computer Methods in Applied Mechanics & Engineering, 139, 3-47 (1996)

    下載圖示 校內:2018-08-13公開
    校外:2018-08-13公開
    QR CODE