簡易檢索 / 詳目顯示

研究生: 郭欣瑜
Kuo, Hsin-Yu
論文名稱: 幽門螺旋桿菌感染相關的微核糖核酸表現於胃部腸化生致癌機轉上形成的影響
The epigenetic miRNAs dysregulation may contribute to H. pylori infection related gastric precancerous lesions during carcinogenesis
指導教授: 許博翔
Sheu, Bor‐Shyang
呂政展
Lu, Cheng‐Chang
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 84
中文關鍵詞: 胃腺癌胃黏膜癌前病變幽門桿菌微核糖核酸
外文關鍵詞: H. pylori, gastric precancerous lesions, miRNAs, gastric adenocarcinoma
ORCID: 0000-0002-6413-7669
相關次數: 點閱:45下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景:腸化生(Intestinal metaplasia, IM)和解痙多肽化生(Spasmolytic polypeptide-expressing metaplasia, SPEM)被認為是胃腺癌的胃黏膜癌前病變,並且都與附基因上(epigenetic)微核糖核酸(miRNA)的調控相關。先前的研究顯示,胃癌家族親屬在幽門螺旋桿菌感染後易出現胃黏膜癌前病變。我們首先(I)探討高胃癌風險之胃癌親屬之解痙多肽化生之患病率和分佈,並與低風險之非潰瘍性消化不良病患對照相比,探討幽門螺桿菌除菌後解痙多肽化生的可逆性。(II)接著並進一步研究血液中胃蛋白酶原和三葉因子家族蛋白(trefoil factor family, TFF)是否可用於檢測組織學上的癌前病變。最後(III)我們將評估幽門螺旋桿菌感染相關之微核糖核酸與腫瘤抑制基因調控網絡於腸化生上的影響。
    研究方法:我們前瞻性招募了年齡和性別相符之高風險胃癌親屬與非潰瘍性消化不良病患作為對照,病患將接受上消化道內視鏡檢查以確定胃組織學和胃粘膜幽門螺旋桿菌狀態。透過酵素結合免疫吸附分析法(ELISA)檢測血清中胃蛋白酶原和三葉因子家族蛋白濃度與胃粘膜組織學上癌前病變表現的相關性。並基於整合微核糖核酸的和相關之下游基因數據分析,檢測可能的微核糖核酸及相關下游調控基因於胃腸化生之調節網絡。
    結果:高風險胃癌親屬罹患解痙多肽化生癌前病變的機會高於非潰瘍性消化不良病患(42% vs. 14%,P < 0.01)。根除幽門螺旋桿菌感染可使胃黏膜組織學達到70.7%的解痙多肽化生癌前病變消退。血清中胃蛋白酶原和三葉因子蛋白濃度並無法預測胃粘膜組織學上之癌前病變。當病患胃組織學上具有胃體炎性指數(corpus gastritis index, CGI)陽性時、血清中三葉因子蛋白濃度與胃組織學上解痙多肽化生癌前病變的嚴重度相關 (P = 0.032)。對於胃體炎性指數陰性的病患,血清中三葉因子蛋白濃度與胃幽門螺旋桿菌感染之菌量及胃竇發炎程度相關(P = 0.001)。
    對於調控胃部腸化生表現之相關微核糖核酸與下游調控基因之調節網絡,我們首先探討幽門螺旋桿菌感染相關的微核糖核酸(miR-21,miR-155,miR-223)和腫瘤抑制因子MDGA2 (MAM domain containing glycosylphosphatidylinositol anchor 2, MDGA2)調控網絡在腸化生的調控。幽門桿菌感染導致MKN1細胞抑癌基因MDGA2的表現下降,且與菌落量及時間長短相關。在幽門桿菌感染的胃粘膜上皮組織、隨著感染所造成胃炎至胃癌前組織學上病理變化、也伴隨抑癌基因MDGA2表現的逐步下降。AGS細胞外加MDGA2表現、會減少腸化生標記CDX2及TFF2表現。此外隨著感染所造成胃炎至胃癌前病理組織學改變外、也伴隨MDGA2抑癌基因相關微型核糖核酸的表現。根除幽門螺旋桿菌可使具有解痙多肽化生癌前病變的病患、胃組織黏膜微型核糖核酸的表現下降與相對應之MDGA2表現上升、但與胃組織黏膜不具癌前病變之病患相比、變化的程度並沒有完全可逆。
    結論:幽門螺旋桿菌感染的胃癌親屬於幽門桿菌感染後易出現解痙多肽化生之胃癌前病變,驗證了胃癌前病變的家族性聚集。腫瘤抑制因子的潛在相互作用及其通過微核糖核酸的協調調節,代表了微核糖核酸網絡在腸化生的發展中的影響。幽門螺旋桿菌感染的根除不能完全改善胃癌前病變組織學在胃黏膜上的微型核糖核酸的表現。長期幽門螺旋桿菌的感染可能誘導胃黏膜基因的表觀遺傳修飾,但無法由幽門螺旋桿菌除菌而逆轉。

    Background and Aim: Intestinal metaplasia (IM) and spasmolytic polypeptide-expressing metaplasia (SPEM) are considered neoplastic precursors of gastric adenocarcinoma and are both related to the epigenetic regulation of microRNA (miRNA) expression. Previous studies have found that the gastric cancer family (GCF) first relatives tend to present with gastric pre-neoplastic lesions after H. pylori infection. Firstly, (I) we first aimed to explore the prevalence and distribution of SPEM in first degree relatives of GCF and the reversibility of SPEM after H. pylori eradication, in comparison with a control group of patients diagnosed with non-ulcer dyspepsia (NUD). (II) Secondly, to investigate if serum levels of pepsinogen I/II and trefoil factor family (TFF) proteins were useful for detecting gastric metaplasia. Finally, (III) we intended to evaluate the potential roles of the miRNAs mediating genetic network involved in the regulation of gastric metaplasia.
    Methods: In our prospective study, two subject groups, experimental group of GCFs and control NUD patients, were matched according to age and gender and given a panendoscopy to determine their gastric histology and H. pylori status. Serum levels of TFF2, TFF3, and pepsinogen I/II were checked by means of the enzyme-linked immunosorbent assay (ELISA). The quantitative reverse transcription-PCR method was used both to perform an integrated analysis of miRNA and mRNA data related to human precancerous lesions and to derive bioinformatic predictions in order to identify possible miRNA-mRNA regulatory networks. MDGA2 was overexpressed in Gastric cancer cell lines to evaluate its effects on the expression of metaplasia markers. Finally, the expression of miRNAs in response to pre-neoplastic precursors was examined both before and after H. pylori eradication.
    Results: GCF subjects exhibited a higher prevalence of SPEM than NUD controls did (42% vs 14%, P < 0.01). The eradication of H. pylori achieved a 70.7% regression of SPEM. Serum levels of neither TFF nor pepsinogen predicted the presence of histologic SPEM or IM. Serum levels of TFF2 were higher in GCFs with the corpus-predominant gastritis index (CGI) who also had advanced SPEM (P = 0.032) than those of control subjects. For GCFs without the CGI, elevated serum levels of TFF2 correlated with a higher H. pylori density and more severe antral gastritis (P = 0.001).
    Regarding miRNA-mRNA regulatory networks, the miRNA‐21/155/223 and MDGA2 circuit involved in the development of gastric metaplasia. In the case of these regulatory network, infection with the H. pylori strain (Hp1033) downregulated the expression of MDGA2 in a dose- and time-dependent manner in gastric cell lines (P > 0.05). The gradually declining levels of MDGA2 correspond to progressive changes in the degree of severity, from inflammatory status to advanced stage of gastric metaplasia, and cancer, which is reminiscent of Correa cascade. The expression of miRNA‐21, ‐155, and ‐223 in the antral mucosa was significantly higher in subjects with SPEM and IM, respectively, than in those without such pre-neoplastic lesions. Surprisingly, TFF2, marker for SPEM and IM marker, CDX2, critical transcription factors and intestinal patterning, were downregulated following the overexpression of MDGA2 in gastric cell lines. Alterations in the reciprocal expression patterns of MDGA2 and miR‐21, 155, and 223 were partially reversible after the eradication of H. pylori from the SPEM lineages, but this was not achieved as completely as compared with non-neoplastic lesions (Helicobacter-induced gastritis).
    Conclusions: The H. pylori-infected GCF subjects were prone to SPEM, which indicates familial clustering of gastric pre-neoplastic lesions. The potential interplay between tumor suppressors and their coordinated regulation by miRNAs suggests that a miRNA network may be responsible for the expression of intestinal transcripts during the development of metaplasia. The eradication of H. pylori did not totally achieve the histological regression of SPEM, nor did it completely mitigate miRNA dysregulation in subjects with SPEM. Chronic colonization by H. pylori might induce an epigenetic modification in the gastric mucosal genes, which could not be completely reversible by means of bacterial eradication alone.

    Contents XII Chapter 1 1 Introduction 1 1.1 Gastric cancer and gastric pre-neoplastic lesions 1 1.2 Diagnostic approach for identifying gastric pre-neoplastic lesions 2 1.3 Helicobacter pylori and the epigenetic modification of gastric pre-neoplastic lesions 4 1.4 Thesis Aims 6 Chapter 2 The H pylori‐infected relatives of patients with gastric cancer were prone to development of SPEM 8 2.1 Materials and Methods 8 2.2 Results 11 2.3 Discussion 16 2.4 Figures and tables 24 Chapter 3 The regulatory network combining miRNA-21, 155 and 223 with MDGA2 involved in the change to the phenotype of metaplastic cells 38 3.1 Material and methods 38 3.2 Results 44 3.3 Discussion 51 3.4 Figure and tables 56 Chapter 4 68 Conclusion, Discussion, and Prospects 68 4.1 Experimental findings and conclusions 68 4.2 Discussion 70 4.3 Prospects 72 Publication lists 75 Conference abstract 77 References 79

    Aikou, S., Y. Ohmoto, T. Gunji, et al. Tests for serum levels of trefoil factor family proteins can improve gastric cancer screening. Gastroenterology 141: 837-845.e1-7. 2011.
    Asaka, M., H. Takeda, T. Sugiyama and M. Kato. What role does Helicobacter pylori play in gastric cancer? Gastroenterology 113: S56-60. 1997.
    Banks, M., D. Graham, M. Jansen, et al. British Society of Gastroenterology guidelines on the diagnosis and management of patients at risk of gastric adenocarcinoma. Gut 68: 1545-1575. 2019.
    Barros, R., J. N. Freund, L. David and R. Almeida. Gastric intestinal metaplasia revisited: function and regulation of CDX2. Trends Mol Med 18: 555-63. 2012.
    Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-97. 2004.
    Bockerstett, K. A., S. A. Lewis, K. J. Wolf, et al. Single-cell transcriptional analyses of spasmolytic polypeptide-expressing metaplasia arising from acute drug injury and chronic inflammation in the stomach. Gut 69: 1027-1038. 2020.
    Brenner, H., G. Bode and H. Boeing. Helicobacter pylori infection among offspring of patients with stomach cancer. Gastroenterology 118: 31-5. 2000.
    Camargo, M. C., W. H. Kim, A. M. Chiaravalli, et al. Improved survival of gastric cancer with tumour Epstein-Barr virus positivity: an international pooled analysis. Gut 63: 236-43. 2014.
    Casamayor, M., R. Morlock, H. Maeda and J. Ajani. Targeted literature review of the global burden of gastric cancer. Ecancermedicalscience 12: 883. 2018.
    Cheng, H. C., Y. C. Tsai, H. B. Yang, et al. The corpus-predominant gastritis index can be an early and reversible marker to identify the gastric cancer risk of Helicobacter pylori-infected nonulcer dyspepsia. Helicobacter 22. 2017.
    Correa, P. A human model of gastric carcinogenesis. Cancer Res 48: 3554-60. 1988.
    Correa, P. and M. B. Piazuelo. The gastric precancerous cascade. J Dig Dis 13: 2-9. 2012.
    Correa, P., M. B. Piazuelo and K. T. Wilson. Pathology of gastric intestinal metaplasia: clinical implications. Am J Gastroenterol 105: 493-8. 2010.
    de Vries, A. C., N. C. van Grieken, C. W. Looman, et al. Gastric cancer risk in patients with premalignant gastric lesions: a nationwide cohort study in the Netherlands. Gastroenterology 134: 945-52. 2008.
    Dignass, A., K. Lynch-Devaney, H. Kindon, L. Thim and D. K. Podolsky. Trefoil peptides promote epithelial migration through a transforming growth factor beta-independent pathway. J Clin Invest 94: 376-83. 1994.
    Dinis-Ribeiro, M., M. Areia, A. C. de Vries, et al. Management of precancerous conditions and lesions in the stomach (MAPS): guideline from the European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter Study Group (EHSG), European Society of Pathology (ESP), and the Sociedade Portuguesa de Endoscopia Digestiva (SPED). Endoscopy 44: 74-94. 2012.
    El-Omar, E. M., K. Oien, L. S. Murray, et al. Increased prevalence of precancerous changes in relatives of gastric cancer patients: critical role of H. pylori. Gastroenterology 118: 22-30. 2000.
    Esquela-Kerscher, A. and F. J. Slack. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6: 259-69. 2006.
    Familari, M., G. A. Cook, D. R. Taupin, G. Marryatt, N. D. Yeomans and A. S. Giraud. Trefoil peptides are early markers of gastrointestinal maturation in the rat. Int J Dev Biol 42: 783-9. 1998.
    Fox, J. G., A. B. Rogers, M. T. Whary, et al. Accelerated progression of gastritis to dysplasia in the pyloric antrum of TFF2 -/- C57BL6 x Sv129 Helicobacter pylori-infected mice. Am J Pathol 171: 1520-8. 2007.
    Goldenring, J. R. Pyloric metaplasia, pseudopyloric metaplasia, ulcer-associated cell lineage and spasmolytic polypeptide-expressing metaplasia: reparative lineages in the gastrointestinal mucosa. J Pathol 245: 132-137. 2018.
    Goldenring, J. R. and J. C. Mills. Cellular Plasticity, Reprogramming, and Regeneration: Metaplasia in the Stomach and Beyond. Gastroenterology 162: 415-430. 2022.
    Goldenring, J. R., K. T. Nam, T. C. Wang, J. C. Mills and N. A. Wright. Spasmolytic polypeptide-expressing metaplasia and intestinal metaplasia: time for reevaluation of metaplasias and the origins of gastric cancer. Gastroenterology 138: 2207-10, 2210.e1. 2010.
    Gutiérrez-González, L. and N. A. Wright. Biology of intestinal metaplasia in 2008: more than a simple phenotypic alteration. Dig Liver Dis 40: 510-22. 2008.
    Haj-Sheykholeslami, A., N. Rakhshani, A. Amirzargar, et al. Serum pepsinogen I, pepsinogen II, and gastrin 17 in relatives of gastric cancer patients: comparative study with type and severity of gastritis. Clin Gastroenterol Hepatol 6: 174-9. 2008.
    Halldorsdottir, A. M., M. Sigurdardottrir, J. G. Jonasson, et al. Spasmolytic polypeptide-expressing metaplasia (SPEM) associated with gastric cancer in Iceland. Dig Dis Sci 48: 431-41. 2003.
    Huang, Z., X. Zhang, H. Lu, et al. Serum trefoil factor 3 is a promising non-invasive biomarker for gastric cancer screening: a monocentric cohort study in China. BMC Gastroenterol 14: 74. 2014.
    Hung, K. H., H. W. Hung, H. B. Yang, C. C. Lu, J. J. Wu and B. S. Sheu. Host single nucleotide polymorphisms of MMP-9 -1562/TIMP-1 372 have gender differences in the risk of gastric intestinal metaplasia after Helicobacter pylori infection. Helicobacter 14: 580-7. 2009.
    Hung, K. H., J. J. Wu, H. B. Yang, L. J. Su and B. S. Sheu. Host Wnt/beta-catenin pathway triggered by Helicobacter pylori correlates with regression of gastric intestinal metaplasia after H. pylori eradication. J Med Microbiol 58: 567-576. 2009.
    Hwang, Y. J. and N. Kim. Reversibility of atrophic gastritis and intestinal metaplasia after Helicobacter pylori eradication - a prospective study for up to 10 years. 47: 380-390. 2018.
    Hwang, Y. J., N. Kim, H. S. Lee, et al. Reversibility of atrophic gastritis and intestinal metaplasia after Helicobacter pylori eradication - a prospective study for up to 10 years. Aliment Pharmacol Ther 47: 380-390. 2018.
    Isobe, T., K. Hashimoto, J. Kizaki, et al. Characteristics and prognosis of gastric cancer in young patients. Oncol Rep 30: 43-9. 2013.
    Ito, K., L. S. Chuang, T. Ito, et al. Loss of Runx3 is a key event in inducing precancerous state of the stomach. Gastroenterology 140: 1536-46.e8. 2011.
    Joset, P., A. Wacker, R. Babey, et al. Rostral growth of commissural axons requires the cell adhesion molecule MDGA2. Neural Dev 6: 22. 2011.
    Kaise, M., J. Miwa, A. Fujimoto, et al. Influence of Helicobacter pylori status and eradication on the serum levels of trefoil factors and pepsinogen test: serum trefoil factor 3 is a stable biomarker. Gastric Cancer 16: 329-37. 2013.
    Kaise, M., J. Miwa, J. Tashiro, et al. The combination of serum trefoil factor 3 and pepsinogen testing is a valid non-endoscopic biomarker for predicting the presence of gastric cancer: a new marker for gastric cancer risk. J Gastroenterol 46: 736-45. 2011.
    Kindon, H., C. Pothoulakis, L. Thim, K. Lynch-Devaney and D. K. Podolsky. Trefoil peptide protection of intestinal epithelial barrier function: cooperative interaction with mucin glycoprotein. Gastroenterology 109: 516-23. 1995.
    Kuo, H. Y., W. L. Chang, Y. C. Yeh, et al. Spasmolytic polypeptide-expressing metaplasia associated with higher expressions of miR-21, 155, and 223 can be regressed by Helicobacter pylori eradication in the gastric cancer familial relatives. 24: e12578. 2019.
    Lee, S. H., B. Jang, J. Min, et al. Up-regulation of Aquaporin 5 Defines Spasmolytic Polypeptide-Expressing Metaplasia and Progression to Incomplete Intestinal Metaplasia. Cell Mol Gastroenterol Hepatol 13: 199-217. 2022.
    Link, A., J. Kupcinskas, T. Wex and P. Malfertheiner. Macro-role of microRNA in gastric cancer. Dig Dis 30: 255-67. 2012.
    Link, A., W. Schirrmeister, C. Langner, et al. Differential expression of microRNAs in preneoplastic gastric mucosa. Sci Rep 5: 8270. 2015.
    Litwack, E. D., R. Babey, R. Buser, M. Gesemann and D. D. O'Leary. Identification and characterization of two novel brain-derived immunoglobulin superfamily members with a unique structural organization. Mol Cell Neurosci 25: 263-74. 2004.
    Liu, L., Y. Wang, Y. Zhao, et al. Global knowledge mapping and emerging trends in research between spasmolytic polypeptide-expressing metaplasia and gastric carcinogenesis: A bibliometric analysis from 2002 to 2022. Front Cell Infect Microbiol 12: 1108378. 2022.
    Lo, S. S., P. S. Hung, J. H. Chen, et al. Overexpression of miR-370 and downregulation of its novel target TGFβ-RII contribute to the progression of gastric carcinoma. Oncogene 31: 226-37. 2012.
    Maekita, T., K. Nakazawa, M. Mihara, et al. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res 12: 989-95. 2006.
    Malfertheiner, P., F. Megraud, T. Rokkas, et al. Management of Helicobacter pylori infection: the Maastricht VI/Florence consensus report. Gut. 2022.
    May, F. E. and B. R. Westley. Expression of human intestinal trefoil factor in malignant cells and its regulation by oestrogen in breast cancer cells. J Pathol 182: 404-13. 1997.
    Miehlke, S., R. M. Genta, D. Y. Graham and M. F. Go. Molecular relationships of Helicobacter pylori strains in a family with gastroduodenal disease. Am J Gastroenterol 94: 364-8. 1999.
    Mutoh, H., S. Sakurai, K. Satoh, et al. Cdx1 induced intestinal metaplasia in the transgenic mouse stomach: comparative study with Cdx2 transgenic mice. Gut 53: 1416-23. 2004.
    Na, H. K. and J. H. Woo. Helicobacter pylori Induces Hypermethylation of CpG Islands Through Upregulation of DNA Methyltransferase: Possible Involvement of Reactive Oxygen/Nitrogen Species. J Cancer Prev 19: 259-64. 2014.
    Nakajima, T., S. Yamashita, T. Maekita, T. Niwa, K. Nakazawa and T. Ushijima. The presence of a methylation fingerprint of Helicobacter pylori infection in human gastric mucosae. Int J Cancer 124: 905-10. 2009.
    Nishizawa, T. and H. Suzuki. The role of microRNA in gastric malignancy. Int J Mol Sci 14: 9487-96. 2013.
    Oertli, M., D. B. Engler, E. Kohler, M. Koch, T. F. Meyer and A. Muller. MicroRNA-155 is essential for the T cell-mediated control of Helicobacter pylori infection and for the induction of chronic Gastritis and Colitis. J Immunol 187: 3578-86. 2011.
    Oh, S., N. Kim, H. Yoon, et al. Risk factors of atrophic gastritis and intestinal metaplasia in first-degree relatives of gastric cancer patients compared with age-sex matched controls. J Cancer Prev 18: 149-60. 2013.
    Oishi, Y., Y. Kiyohara, M. Kubo, et al. The serum pepsinogen test as a predictor of gastric cancer: the Hisayama study. Am J Epidemiol 163: 629-37. 2006.
    Petersen, C. P., A. R. Meyer, C. De Salvo, et al. A signalling cascade of IL-33 to IL-13 regulates metaplasia in the mouse stomach. Gut 67: 805-817. 2018.
    Peterson, A. J., T. R. Menheniott, L. O'Connor, et al. Helicobacter pylori infection promotes methylation and silencing of trefoil factor 2, leading to gastric tumor development in mice and humans. Gastroenterology 139: 2005-17. 2010.
    Pimentel-Nunes, P., D. Libânio, R. Marcos-Pinto, et al. Management of epithelial precancerous conditions and lesions in the stomach (MAPS II): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG), European Society of Pathology (ESP), and Sociedade Portuguesa de Endoscopia Digestiva (SPED) guideline update 2019. Endoscopy 51: 365-388. 2019.
    Playford, R. J., T. Marchbank, R. Chinery, et al. Human spasmolytic polypeptide is a cytoprotective agent that stimulates cell migration. Gastroenterology 108: 108-16. 1995.
    Rashid, A. and J. P. Issa. CpG island methylation in gastroenterologic neoplasia: a maturing field. Gastroenterology 127: 1578-88. 2004.
    Saenz, J. B. and J. C. Mills. Acid and the basis for cellular plasticity and reprogramming in gastric repair and cancer. Nat Rev Gastroenterol Hepatol 15: 257-273. 2018.
    Schmidt, P. H., J. R. Lee, V. Joshi, et al. Identification of a metaplastic cell lineage associated with human gastric adenocarcinoma. Lab Invest 79: 639-46. 1999.
    Shah, S. C., M. B. Piazuelo, E. J. Kuipers and D. Li. AGA Clinical Practice Update on the Diagnosis and Management of Atrophic Gastritis: Expert Review. Gastroenterology 161: 1325-1332.e7. 2021.
    Sheu, B. S., H. B. Yang, S. M. Sheu, A. H. Huang and J. J. Wu. Higher gastric cycloxygenase-2 expression and precancerous change in Helicobacter pylori-infected relatives of gastric cancer patients. Clin Cancer Res 9: 5245-51. 2003.
    Shimizu, T., Y. Sohn, E. Choi, C. P. Petersen, N. Prasad and J. R. Goldenring. Decrease in MiR-148a Expression During Initiation of Chief Cell Transdifferentiation. Cell Mol Gastroenterol Hepatol 9: 61-78. 2020.
    Shiotani, A., T. Murao, Y. Kimura, et al. Identification of serum miRNAs as novel non-invasive biomarkers for detection of high risk for early gastric cancer. Br J Cancer 109: 2323-30. 2013.
    Silberg, D. G., J. Sullivan, E. Kang, et al. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 122: 689-96. 2002.
    Sitas, F., R. Smallwood, D. Jewell, et al. Serum anti-Helicobacter pylori IgG antibodies and pepsinogens A and C as serological markers of chronic atrophic gastritis. Cancer Epidemiol Biomarkers Prev 2: 119-23. 1993.
    Song, H., I. G. Ekheden, A. Ploner, J. Ericsson, O. Nyren and W. Ye. Family history of gastric mucosal abnormality and the risk of gastric cancer: a population-based observational study. Int J Epidemiol 47: 440-449. 2018.
    Sousa, J. F., K. T. Nam, C. P. Petersen, et al. miR-30-HNF4gamma and miR-194-NR2F2 regulatory networks contribute to the upregulation of metaplasia markers in the stomach. Gut 65: 914-24. 2016.
    Sousa, J. F., K. T. Nam, C. P. Petersen, et al. miR-30-HNF4γ and miR-194-NR2F2 regulatory networks contribute to the upregulation of metaplasia markers in the stomach. Gut 65: 914-24. 2016.
    Sugano, K., J. Tack, E. J. Kuipers, et al. Kyoto global consensus report on Helicobacter pylori gastritis. Gut 64: 1353-67. 2015.
    Sung, J. J., S. R. Lin, J. Y. Ching, et al. Atrophy and intestinal metaplasia one year after cure of H. pylori infection: a prospective, randomized study. Gastroenterology 119: 7-14. 2000.
    Takeshima, H., T. Niwa, T. Takahashi, et al. Frequent involvement of chromatin remodeler alterations in gastric field cancerization. Cancer Lett 357: 328-38. 2015.
    Tan, P. and K. G. Yeoh. Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. Gastroenterology 149: 1153-1162.e3. 2015.
    Tekesin, K., M. Emin Gunes, D. Tural, et al. Clinicopathological characteristics, prognosis and survival outcome of gastric cancer in young patients: A large cohort retrospective study. J buon 24: 672-678. 2019.
    Terris, B., E. Blaveri, T. Crnogorac-Jurcevic, et al. Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. Am J Pathol 160: 1745-54. 2002.
    Tsai, Y. C., W. H. Hsiao, S. H. Lin, et al. Genomic single nucleotide polymorphisms in the offspring of gastric cancer patients predispose to spasmolytic polypeptide-expressing metaplasia after H. pylori infection. J Biomed Sci 22: 16. 2015.
    Tsai, Y. C., W. H. Hsiao, H. B. Yang, et al. The corpus-predominant gastritis index may serve as an early marker of Helicobacter pylori-infected patients at risk of gastric cancer. Aliment Pharmacol Ther 37: 969-78. 2013.
    Urita, Y., K. Hike, N. Torii, et al. Serum pepsinogens as a predicator of the topography of intestinal metaplasia in patients with atrophic gastritis. Dig Dis Sci 49: 795-801. 2004.
    Ushijima, T. and N. Hattori. Molecular pathways: involvement of Helicobacter pylori-triggered inflammation in the formation of an epigenetic field defect, and its usefulness as cancer risk and exposure markers. Clin Cancer Res 18: 923-9. 2012.
    Wang, K., Q. Liang, X. Li, et al. MDGA2 is a novel tumour suppressor cooperating with DMAP1 in gastric cancer and is associated with disease outcome. Gut. 2015.
    Wang, K., Q. Liang, X. Li, et al. MDGA2 is a novel tumour suppressor cooperating with DMAP1 in gastric cancer and is associated with disease outcome. Gut 65: 1619-31. 2016.
    Warson, C., J. H. Van De Bovenkamp, A. M. Korteland-Van Male, et al. Barrett's esophagus is characterized by expression of gastric-type mucins (MUC5AC, MUC6) and TFF peptides (TFF1 and TFF2), but the risk of carcinoma development may be indicated by the intestinal-type mucin, MUC2. Hum Pathol 33: 660-8. 2002.
    Weis, V. G. and J. R. Goldenring. Current understanding of SPEM and its standing in the preneoplastic process. Gastric Cancer 12: 189-97. 2009.
    Weis, V. G., C. P. Petersen, J. C. Mills, P. L. Tuma, R. H. Whitehead and J. R. Goldenring. Establishment of novel in vitro mouse chief cell and SPEM cultures identifies MAL2 as a marker of metaplasia in the stomach. Am J Physiol Gastrointest Liver Physiol 307: G777-92. 2014.
    Weis, V. G., J. F. Sousa, B. J. LaFleur, et al. Heterogeneity in mouse spasmolytic polypeptide-expressing metaplasia lineages identifies markers of metaplastic progression. Gut 62: 1270-9. 2013.
    Yan, L., Y. Chen, F. Chen, et al. Effect of Helicobacter pylori Eradication on Gastric Cancer Prevention: Updated Report From a Randomized Controlled Trial With 26.5 Years of Follow-up. Gastroenterology 163: 154-162.e3. 2022.
    Yang, H. B., H. C. Cheng, B. S. Sheu, K. H. Hung, M. F. Liou and J. J. Wu. Chronic celecoxib users more often show regression of gastric intestinal metaplasia after Helicobacter pylori eradication. Aliment Pharmacol Ther 25: 455-61. 2007.
    Yasui, W., N. Oue, K. Sentani, N. Sakamoto and J. Motoshita. Transcriptome dissection of gastric cancer: identification of novel diagnostic and therapeutic targets from pathology specimens. Pathol Int 59: 121-36. 2009.
    Yeh, Y. C., H. C. Cheng, H. B. Yang, W. L. Chang and B. S. Sheu. H. pylori CagL-Y58/E59 prime higher integrin α5β1 in adverse pH condition to enhance hypochlorhydria vicious cycle for gastric carcinogenesis. PLoS One 8: e72735. 2013.
    Zabaleta, J. MicroRNA: A Bridge from H. pylori Infection to Gastritis and Gastric Cancer Development. Front Genet 3: 294. 2012.
    Zhao, J., Q. Liang, K. F. Cheung, et al. Genome-wide identification of Epstein-Barr virus-driven promoter methylation profiles of human genes in gastric cancer cells. Cancer 119: 304-12. 2013.
    Zhou, X., G. Ji, H. Chen, W. Jin, C. Yin and G. Zhang. Clinical role of circulating miR-223 as a novel biomarker in early diagnosis of cancer patients. Int J Clin Exp Med 8: 16890-8. 2015.
    Zhu, X., M. Lv, H. Wang and W. Guan. Identification of circulating microRNAs as novel potential biomarkers for gastric cancer detection: a systematic review and meta-analysis. Dig Dis Sci 59: 911-9. 2014.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE