簡易檢索 / 詳目顯示

研究生: 吳沛芸
Wu, Pei-Yun
論文名稱: 上肢智慧穿戴輔具應用於肌力訓練與傷後復健設計與使用性研究
Application of Upper Limb Smart Wearable Assistive Devices for Muscle Strength Training and Post-Injury Rehabilitation: Design and Usability Study
指導教授: 林彥呈
Lin, Yang-Cheng
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 183
中文關鍵詞: 輔具設計表面肌電訊號過度使用勞動族群復健與訓練
外文關鍵詞: Assistive device design, surface electromyography signals, overuse, labor force, rehabilitation and training
相關次數: 點閱:612下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高齡化與少子化的趨勢,導致各國勞動族群的退休年限不斷遞增,職業災害與職業病的發生對於家庭、社會與產業的發展都是一大的危害,如何協助勞動族群能保持健康,成為近年來相當受到重視的議題。上肢過度使用所造成的傷害,佔全球職業災害中相當高的比例,目前對於職業災害的預防主要透過環境安全的維護,而醫療領域中更多的則是重視傷後復原的研究與技術發展,在科技發展卓越,智慧型穿戴設備普及的現今,是否有機會透過日常運動與工作中的數據偵測,平日裡對於上肢的自主訓練,或者是透過累積的個人生理訊號能及早發現過度使用產生的疾病,達到預防的效果,另外是否有能夠透過更簡便的穿戴裝置,於家中或任何場域進行傷後的復健訓練,上述即為本研究將探討與發展的議題。本研究將透過非侵入式的表面肌電訊號與慣性量測單元,整合於上肢穿戴式輔具,輔具設計將以人為本的角度出發,進行穿戴行為研究、目標族群人因尺寸規範,以及產品使用性測式,期望開發一套符合勞動族群身形,且便利於此族群人士進行日常訓練與復健的穿戴式智慧輔具產品,並針對此設計領域提出相對應的輔具設計規範,利於未來研究與開發者使用。本研究將透過五點評分使用性量表、動作時間分析、半結構式訪談與表面肌電訊號數值,了解研究開發之上肢智慧輔具,經由結合Nielsen十項使用性原則與通用性設計原則,在設計與改良後的實際成效,以驗證研究提出的上肢輔具設計與設計建議的實質性。

    The trend of an aging population and low birth rates has led to a continual increase in the retirement age of the workforce across various countries. Occupational accidents and diseases pose significant risks to families, society, and industrial development. Assisting the workforce in maintaining health has become a highly emphasized issue in recent years. Injuries caused by overuse of the upper limbs account for a considerable proportion of global occupational accidents. Currently, the prevention of occupational accidents mainly involves maintaining safety in the environment, while the medical field focuses more on research and technological development for post-injury recovery. With the advancement of technology and the widespread use of smart wearable devices, there is a possibility to prevent diseases caused by overuse through daily exercise and work data monitoring, autonomous upper limb training, or early detection of diseases through accumulated personal physiological data. Additionally, there is the potential for simpler wearable devices that can be used for post-injury rehabilitation training at home or in any setting. The aforementioned points are the topics this study aims to explore and develop. This study will utilize non-invasive surface electromyography signals and inertial measurement units integrated into upper limb wearable assistive devices. The design of the assistive devices will start from a human-centric perspective, including studies on wearing behavior, anthropometric standards for the target demographic, and product usability testing. The goal is to develop a set of wearable smart assistive devices that fit the labor force's physique and are convenient for daily training and rehabilitation. This study will propose corresponding design standards for assistive devices in this design domain, which will be useful for future researchers and developers. The study will understand the upper limb smart assistive devices developed through a five-point usability scale, motion time analysis, semi-structured interviews, and surface electromyography data. By combining Nielsen's ten usability principles with universal design principles, the actual effectiveness of the design and improvements will be verified to substantiate the proposed upper limb assistive device design and design recommendations.

    摘要 i SUMMARY ii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS iv LIST OF TABLES vii LIST OF FIGURES x LIST OF SYMBOLS AND ABBREVIATIONS xv CHAPTER 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Research Motivation 3 1.3 Research Objectives 5 1.4 Research Framework 7 CHAPTER 2 Literature Review 11 2.1 Labor Force and Occupational Injuries 11 2.1.1 Overview of Labor Force 12 2.1.2 Definition and Impact of Occupational Injuries 14 2.1.3 Upper Limb Musculoskeletal Overview 17 2.1.4 Common Upper Limb Musculoskeletal Injuries 19 2.2 Wearable Medical Products 25 2.2.1 Market Trends in Wearable Products 26 2.2.2 Telemedicine 27 2.2.3 Upper Limb Wearable Sensing Technology Applications 29 2.3 Electromyography Sensing Technology 33 2.3.1 Overview of Electromyography Sensing Technology 33 2.3.2 Electromyography Signal Acquisition and Identification 34 2.3.3 Clinical Applications and Product Development Research in Electromyography Sensing 36 2.4 Universal Design and Usability Assessment 39 2.4.1 Definition of Universal Design 39 2.4.2 Human Measurement 40 2.4.3 Definition of Usability 42 2.4.4 Usability Evaluation 44 2.5 Summary 47 CHAPTER 3 Research Methodology 48 3.1 Study of Human Factors Dimensions and Optimal Muscle Detection Points 49 3.1.1 Expert Interviews 50 3.1.2 Experimental Equipment and Measurement Methods 52 3.1.3 Upper Limb Muscle Detection Points and Assistive Device Human Factors Data Construction 54 3.2 Usability Design Items and Evaluation Method Adjustment 55 3.2.1 Adjustment of the Seven Principles of Universal Design 55 3.2.2 Adjustment of the Ten Usability Design Principles 56 3.2.3 Usability Evaluation Methods 57 3.3 Surface Electromyography Signal Collection and Evaluation Methods 58 3.4 Clinical Experiment Design 59 3.4.1 Phase One Experiment: Definition of Labor Force Human Factor Dimensions 59 3.4.2 Phase Two Experiment: Definition of Muscle Detection Points 61 3.4.3 Phase Three Experiment: Usability Study and Preliminary Collection of Clinical Muscle Motion Signals 62 3.5 Upper Limb Wearable Assistive Device Design 66 3.5.1 Early Phase One Experiment and Expert Interviews: Definition of Upper Limb Human Factor Dimensions 66 3.5.2 Early Phase Two Experiment and Expert Interviews: Muscle Measurement Locations and Assistive Device Design Dimension Definition 68 3.5.3 Upper Limb Wearable Assistive Device Design and Iteration 71 3.5.4 Study of Upper Limb Assistive Device Wearing Behavior 74 3.5.5 Finalization of Upper Limb Assistive Device Design 75 CHAPTER 4 Research Results and Discussion 77 4.1 Preliminary Usability Evaluation Results of Upper Limb Assistive Device Design 79 4.2 Usability Evaluation Results of Traditional and Smart Upper Limb Assistive Devices 81 4.2.1 Usability Evaluation Experimental Process 81 4.2.2 Wearability Usability Evaluation Data 83 4.2.3 Wearability Usability Data Analysis Results 101 4.3 Upper Limb Assistive Device Wearing Behavior Analysis Results 102 4.3.1 Wearing Behavior Analysis Experimental Process 102 4.3.2 Time Data of Sequential Actions in Wearing 106 4.3.3 Wearing Behavior Analysis and Semi-structured Interview Results 122 4.3.4 Wearing Behavior Analysis Results 132 4.4 Upper Limb Clinical Muscle Motion Signal Analysis Results 136 4.4.1 Muscle Motion Signal Experimental Process 136 4.4.2 Muscle Motion Signal Data and Analysis Results 138 4.5 Comprehensive Discussion 142 CHAPTER 5 Conclusions 144 5.1 Research Summary 144 5.2 Research Limitations and Recommendations 149 REFERENCES 150 Appendix A Upper Limb Anthropometric Item Table (unit: cm) 162 Appendix B Usability Testing Item Table 163 Appendix C Usability Evaluation Questionnaire 164 Appendix D Participant Qualitative Interview Questionnaire 165 Appendix E Expert Interview Questionnaire 166

    Abukhashabah, E., Summan, A., & Balkhyour, M. (2020). Occupational accidents and injuries in construction industry in Jeddah city. Saudi Journal of Biological Sciences, 27(8), 1993–1998. https://doi.org/10.1016/j.sjbs.2020.06.033
    Affairs, A. S. for P. (2013). System Usability Scale (SUS). Department of Health and Human Services. https://reurl.cc/Y0kdr4
    Androniceanu, A.-M., Georgescu, I., Tvaronavičienė, M., & Androniceanu, A. (2020). Canonical Correlation Analysis and a New Composite Index on Digitalization and Labor Force in the Context of the Industrial Revolution 4.0. Sustainability, 12(17), Article 17. https://doi.org/10.3390/su12176812
    Bai, L., Pepper, M. G., Yan, Y., Phillips, M., & Sakel, M. (2020). Low Cost Inertial Sensors for the Motion Tracking and Orientation Estimation of Human Upper Limbs in Neurological Rehabilitation. IEEE Access, 8, 54254–54268. https://doi.org/10.1109/ACCESS.2020.2981014
    Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of Usability Studies, 4(3), 114–123.
    Bartella, A. K., Kamal, M., Kuhnt, T., Hering, K., Halama, D., Pausch, N. C., & Lethaus, B. (2021). Mixed reality in oral and maxillofacial surgery: A symbiosis of virtual and augmented reality or a pointless technological gadget? International Journal of Computerized Dentistry, 24(1), 65–76.
    Beg, S., Handa, M., Shukla, R., Rahman, M., Almalki, W. H., Afzal, O., & Altamimi, A. S. A. (2022). Wearable smart devices in cancer diagnosis and remote clinical trial monitoring: Transforming the healthcare applications. Drug Discovery Today, 27(10), 103314. https://doi.org/10.1016/j.drudis.2022.06.014
    Betthauser, J. L., Krall, J. T., Bannowsky, S. G., Lévay, G., Kaliki, R. R., Fifer, M. S., & Thakor, N. V. (2020). Stable Responsive EMG Sequence Prediction and Adaptive Reinforcement With Temporal Convolutional Networks. IEEE Transactions on Biomedical Engineering, 67(6), 1707–1717. https://doi.org/10.1109/TBME.2019.2943309
    Bevan, N., Carter, J., & Harker, S. (2015). ISO 9241-11 Revised: What Have We Learnt About Usability Since 1998? In M. Kurosu (Ed.), Human-Computer Interaction: Design and Evaluation (pp. 143–151). Springer International Publishing. https://doi.org/10.1007/978-3-319-20901-2_13
    Bhatia, D., Jo, S. H., Ryu, Y., Kim, Y., Kim, D. H., & Park, H.-S. (2021). Wearable triboelectric nanogenerator based exercise system for upper limb rehabilitation post neurological injuries. Nano Energy, 80, 105508. https://doi.org/10.1016/j.nanoen.2020.105508
    Bloom, D. E., Canning, D., & Fink, G. (2010). Implications of population ageing for economic growth. Oxford Review of Economic Policy, 26(4), 583–612. https://doi.org/10.1093/oxrep/grq038
    Cerritelli, F., Chiera, M., Abbro, M., Megale, V., Esteves, J., Gallace, A., & Manzotti, A. (2021). The Challenges and Perspectives of the Integration Between Virtual and Augmented Reality and Manual Therapies. Frontiers in Neurology, 12. https://www.frontiersin.org/articles/10.3389/fneur.2021.700211
    Chen, C. (2017). Occupational Rotator Cuff Syndrome Recognition Reference Guidelines. Occupational safety and Health Administration, Ministry of Labor. https://reurl.cc/Ryrlmg
    Chen, J. (2021). Discussion on issues related to delayed retirement of workers. Legislative Yuan. https://reurl.cc/7MeVgN
    Chen, Pin-Jun. (2021). Product Design and Usability Evaluation: Application of sEMG in Wearable Device on Muscle Training. National Cheng Kung University Dept. of Industrial Design.
    Chong, K. P. L., Guo, J. Z., Deng, X., & Woo, B. K. P. (2020). Consumer Perceptions of Wearable Technology Devices: Retrospective Review and Analysis. JMIR mHealth and uHealth, 8(4), e17544. https://doi.org/10.2196/17544
    Counterpoint Research. (2022). Smartwatch Market Grows 13% YoY in Q1 2022; Apple Stays First, Samsung Solidifies Second Place. Counterpoint. https://reurl.cc/4WWr0Y
    Desai, S. S., Arbor, T. C., & Varacallo, M. (2023). Anatomy, Shoulder and Upper Limb, Musculocutaneous Nerve. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK534199/
    DGBAS. (2012). Social Indicators: National Well‐being Indicators (1rst ed.). https://www.dgbas.gov.tw/public/Attachment/3101411261890WG0X9I.pdf
    Disney, R., Emmerson, C., & Wakefield, M. (2006). Ill health and retirement in Britain: A panel data-based analysis. Journal of Health Economics, 25(4), 621–649. https://doi.org/10.1016/j.jhealeco.2005.05.004
    Drakos, M. C., Rudzki, J. R., Allen, A. A., Potter, H. G., & Altchek, D. W. (2009). Internal Impingement of the Shoulder in the Overhead Athlete. JBJS, 91(11), 2719. https://doi.org/10.2106/JBJS.I.00409
    DSAL. (2022). Workplace Injury Statistics Analysis Report. Labour Affairs Bureau. https://lurl.cc/Bxh6Or
    Du, Y., Jiang, R., & Wang, H. (2023). Ergonomic Design and Assessment of an Improved Handle for a Laparoscopic Dissector Based on 3D Anthropometry. International Journal of Environmental Research and Public Health, 20(3), Article 3. https://doi.org/10.3390/ijerph20032361
    Ebbinghaus, B. (2006). Chapter 4 Ever Earlier Retirement: Comparing Employment Trajectories. In B. Ebbinghaus (Ed.), Reforming Early Retirement in Europe, Japan and the USA (p. 0). Oxford University Press. https://doi.org/10.1093/0199286116.003.0004
    Fernández-Lázaro, D., Mielgo-Ayuso, J., Adams, D. P., González-Bernal, J. J., Fernández Araque, A., Cano García, A., & Fernández-Lázaro, C. I. (2020). Electromyography: A Simple and Accessible Tool to Assess Physical Performance and Health during Hypoxia Training. A Systematic Review. Sustainability, 12(21), Article 21. https://doi.org/10.3390/su12219137
    Furui, A., Hayashi, H., Nakamura, G., Chin, T., & Tsuji, T. (2017). An artificial EMG generation model based on signal-dependent noise and related application to motion classification. PLOS ONE, 12(6), e0180112. https://doi.org/10.1371/journal.pone.0180112
    Gao, J., Fan, Y., Zhang, Q., Luo, L., Hu, X., Li, Y., Song, J., Jiang, H., Gao, X., Zheng, L., Zhao, W., Wang, Z., Ai, W., Wei, Y., Lu, Q., Xu, M., Wang, Y., Song, W., Wang, X., & Huang, W. (2022). Ultra-Robust and Extensible Fibrous Mechanical Sensors for Wearable Smart Healthcare. Advanced Materials, 34(20), 2107511. https://doi.org/10.1002/adma.202107511
    Gasteiger, N., Veer, S. N. van der, Wilson, P., & Dowding, D. (2022). How, for Whom, and in Which Contexts or Conditions Augmented and Virtual Reality Training Works in Upskilling Health Care Workers: Realist Synthesis. JMIR Serious Games, 10(1), e31644. https://doi.org/10.2196/31644
    Gohel, V., & Mehendale, N. (2020). Review on electromyography signal acquisition and processing. Biophysical Reviews, 12(6), 1361–1367. https://doi.org/10.1007/s12551-020-00770-w
    Gritsenko, V., Hardesty, R. L., Boots, M. T., & Yakovenko, S. (2016). Biomechanical Constraints Underlying Motor Primitives Derived from the Musculoskeletal Anatomy of the Human Arm. PLOS ONE, 11(10), e0164050. https://doi.org/10.1371/journal.pone.0164050
    Harrington, J. M., Carter, J. T., Birrell, L., & Gompertz, D. (1998). Surveillance case definitions for work related upper limb pain syndromes. Occupational and Environmental Medicine, 55(4), 264–271. https://doi.org/10.1136/oem.55.4.264
    Harris, M. N., Zhao, X., & Zucchelli, E. (2021). Ageing Workforces, Ill-health and Multi-state Labour Market Transitions*. Oxford Bulletin of Economics and Statistics, 83(1), 199–227. https://doi.org/10.1111/obes.12379
    Hassenzahl, M., & Tractinsky, N. (2006). User experience—A research agenda. Behaviour & Information Technology, 25(2), 91–97. https://doi.org/10.1080/01449290500330331
    Hasson, S. P., Waissengrin, B., Shachar, E., Hodruj, M., Fayngor, R., Brezis, M., Nikolaevski‐Berlin, A., Pelles, S., Safra, T., Geva, R., & Wolf, I. (2021). Rapid Implementation of Telemedicine During the COVID‐19 Pandemic: Perspectives and Preferences of Patients with Cancer. The Oncologist, 26(4), e679–e685. https://doi.org/10.1002/onco.13676
    Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5), 361–374. https://doi.org/10.1016/S1050-6411(00)00027-4
    Hofäcker, D., Schröder, H., Li, Y., & Flynn, M. (2016). Trends and Determinants of Work-Retirement Transitions under Changing Institutional Conditions: Germany, England and Japan compared. Journal of Social Policy, 45(1), 39–64. https://doi.org/10.1017/S004727941500046X
    hqladmin. (2009). Japanese Human Body Dimension Database 2004-2006. General Incorporated Association Human Life Ergonomics Research Center [HQL] Database Site. https://www.hql.jp/database/cat/size/size2004
    Hussain, M. s., Reaz, M. b. i., Mohd-Yasin, F., & Ibrahimy, M. i. (2009). Electromyography signal analysis using wavelet transform and higher order statistics to determine muscle contraction. Expert Systems, 26(1), 35–48. https://doi.org/10.1111/j.1468-0394.2008.00483.x
    IDTechEx. (2023). Wearable Technology Forecasts 2023-2033. https://reurl.cc/jvvW6Z
    ILO. (2011). World Statistic. The Enormous Burden of Poor Working Conditions. https://reurl.cc/Wv8qg7
    ILO. (2019). Work for A Brighter Future (1rst ed.). International Labour Office. https://reurl.cc/nLEqK8
    ILOSH. (2022). Investigation of Labor Anthropometry Database in Taiwan 1. Labor and Occupational Safety and Health Research Institute Official Website. https://www.ilosh.gov.tw/90734/90853/90949/90953/136697/
    Jamieson, P. W., & Katirji, M. B. (1994). Idiopathic generalized myokymia. Muscle & Nerve, 17(1), 42–51. https://doi.org/10.1002/mus.880170106
    Jan, Y-S. (2019). Sports Encyclopedia - Overuse Injury. Encyclopedia of Physical Education and Sports. https://lurl.cc/CawInN
    Javed, O., Maldonado, K. A., & Ashmyan, R. (2023). Anatomy, Shoulder and Upper Limb, Muscles. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK482410/
    Jiang, G. (2020). Is it okay to see a doctor at home? Understand the functions of telemedicine and care. Dr. Hello. https://reurl.cc/z661Ve
    Kallio, H., Pietilä, A.-M., Johnson, M., & Kangasniemi, M. (2016). Systematic methodological review: Developing a framework for a qualitative semi-structured interview guide. Journal of Advanced Nursing, 72(12), 2954–2965. https://doi.org/10.1111/jan.13031
    Kang, M., Shin, S., Jung, J., & Kim, Y. T. (2021). Classification of Mental Stress Using CNN-LSTM Algorithms with Electrocardiogram Signals. Journal of Healthcare Engineering, 2021, e9951905. https://doi.org/10.1155/2021/9951905
    Kroemer, K. H. E., Kroemer, H. J., & Kroemer-Elbert, K. E. (2010). Engineering Anthropometry. In K. H. E. Kroemer, H. J. Kroemer, & K. E. Kroemer-Elbert (Eds.), Engineering Physiology: Bases of Human Factors Engineering/ Ergonomics (pp. 265–330). Springer. https://doi.org/10.1007/978-3-642-12883-7_11
    Lahat, A., & Shatz, Z. (2021). Telemedicine in clinical gastroenterology practice: What do patients prefer? Therapeutic Advances in Gastroenterology, 14, 1756284821989178. https://doi.org/10.1177/1756284821989178
    Lam, J. H., & Bordoni, B. (2023). Anatomy, Shoulder and Upper Limb, Arm Abductor Muscles. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK537148/
    Lee, S., Kim, S., Lim, D., Kim, D.-E., & Jeong, W. (2021). Analysis of EMG Electrode Locations Using 3D Body Scanning for Digital Pattern Construction of a Smart EMG Suit. Sustainability, 13(5), Article 5. https://doi.org/10.3390/su13052654
    Lewis, J. R. (2018). The System Usability Scale: Past, Present, and Future. International Journal of Human–Computer Interaction, 34(7), 577–590. https://doi.org/10.1080/10447318.2018.1455307
    Li, X., Koh, K. H., Farhan, M., & Lai, K. W. C. (2020). An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles. Nanoscale, 12(6), 4110–4118. https://doi.org/10.1039/C9NR09306K
    Lu, P.-J. (2019). Global Smart Wearable Device Market Analysis. Industrial Technology Research Institute. https://reurl.cc/3e7bLO
    MacIver, H., Smyth, G., & Bird, H. A. (2007). Occupational disorders: Non-specific forearm pain. Best Practice & Research Clinical Rheumatology, 21(2), 349–365. https://doi.org/10.1016/j.berh.2006.11.002
    Madero-Cabib I., Feuvre N. L., & König S. (2023). Gendered retirement pathways across lifecourse regimes. Ageing & Society, 43(10), 2394–2423. https://doi.org/10.1017/S0144686X21001781
    Marcin, J. P., Ellis, J., Mawis, R., Nagrampa, E., Nesbitt, T. S., & Dimand, R. J. (2004). Using Telemedicine to Provide Pediatric Subspecialty Care to Children With Special Health Care Needs in an Underserved Rural Community. Pediatrics, 113(1), 1–6. https://doi.org/10.1542/peds.113.1.1
    Mazzuca, D., Borselli, M., Gratteri, S., Zampogna, G., Feola, A., Della Corte, M., Guarna, F., Scorcia, V., & Giannaccare, G. (2022). Applications and Current Medico-Legal Challenges of Telemedicine in Ophthalmology. International Journal of Environmental Research and Public Health, 19(9), Article 9. https://doi.org/10.3390/ijerph19095614
    McDonald, C. G., Sullivan, J. L., Dennis, T. A., & O’Malley, M. K. (2020). A Myoelectric Control Interface for Upper-Limb Robotic Rehabilitation Following Spinal Cord Injury. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(4), 978–987. https://doi.org/10.1109/TNSRE.2020.2979743
    Merrell, R. C. (1995). Telemedicine in the 90’s: Beyond the future. Journal of Medical Systems, 19(1), 15–18. https://doi.org/10.1007/BF02257186
    Ministry of Labor. (2021). Occupational Safety and Health Act. Ministry of Labor Labor Laws and Regulations Search System - All Articles. https://laws.mol.gov.tw/FLAW/FLAWDAT0201.aspx?id=FL015013
    Ministry of Labor. (2021). Survey on employment care for workers disabled by occupational accidents (1rst ed.). https://reurl.cc/ed6n7R
    Ministry of Labor. (2021). Labor Statistics Monthly Report. Ministry of Labor Official Website. https://www.mol.gov.tw/1607/2458/2464/2466/
    Ministry of Labor. (2023). Labor Statistics Terminology. Occupational Accident Statistics Reported by Designated Enterprises in Accordance with the Occupational Safety and Health Act. https://statdb.mol.gov.tw/html/com/st0803.html
    Ministry of Labor. (2023). Occupational Safety and Health Statistics. Occupational Safety and Health Statistics Briefing No. 23 (August 2023). Retrieved October 1, 2023, from https://www.labour.gov.hk/tc/osh/content10.htm
    Mitrasinovic, M. (2008). Universal Design. In M. Erlhoff & T. Marshall (Eds.), Design Dictionary: Perspectives on Design Terminology (pp. 419–422). Birkhäuser. https://doi.org/10.1007/978-3-7643-8140-0_290
    Moon, D. K., Park, Y. J., Song, S.-Y., Kim, M. J., Park, J. S., Nam, D.-C., Kim, D.-H., Na, J.-B., Lee, S.-I., Hwang, S. C., & Park, K.-S. (2018). Common Upper Extremity Disorders and Function Affect Upper Extremity-Related Quality of Life: A Community-Based Sample from Rural Areas. Yonsei Medical Journal, 59(5), 669–676. https://doi.org/10.3349/ymj.2018.59.5.669
    Morris, S. N., Chandran, A., Lempke, L. B., Boltz, A. J., Robison, H. J., & Collins, C. L. (2021). Epidemiology of Injuries in National Collegiate Athletic Association Men’s Basketball: 2014–2015 Through 2018–2019. Journal of Athletic Training, 56(7), 681–687. https://doi.org/10.4085/1062-6050-436-20
    NASA. (1995). Man-Systems Integration Standards (MSIS). MAN-SYSTEMS INTEGRATION STANDARDS. https://msis.jsc.nasa.gov/
    National Development Council. (2023). Labor force estimates. Manpower Supply and Demand Information. https://reurl.cc/NypO7k
    Nielsen, J. (1993). Usability Engineering. Morgan Kaufmann.
    Nielsen, J. (2005). 10 Usability Heuristics for User Interface Design. Nielsen Norman Group. https://www.nngroup.com/articles/ten-usability-heuristics/
    Nielsen, J., & Molich, R. (1990). Heuristic evaluation of user interfaces. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 249–256. https://doi.org/10.1145/97243.97281
    NIOSH. (2023). Upper Limb Musculoskeletal Disorders Consortium | NIOSH | CDC. https://www.cdc.gov/niosh/topics/ergonomics/upperlimb.html
    Occupational Safety and Health Administration. (2023, June 26). Labor Inspection Statistics Annual Report for the Year 2022. Global Information Website of the Occupational Safety and Health Administration. https://www.osha.gov.tw/48110/48331/48333/48339/150732/
    OSHA. (2022). Anthropogenic Hazards. Occupational Safety and Health Administration. https://www.osha.gov.tw/48110/48363/133456/48395/48397/
    Oubre, B., Daneault, J.-F., Boyer, K., Kim, J. H., Jasim, M., Bonato, P., & Lee, S. I. (2020). A Simple Low-Cost Wearable Sensor for Long-Term Ambulatory Monitoring of Knee Joint Kinematics. IEEE Transactions on Biomedical Engineering, 67(12), 3483–3490. https://doi.org/10.1109/TBME.2020.2988438
    Pogorzelska, K., & Chlabicz, S. (2022). Patient Satisfaction with Telemedicine during the COVID-19 Pandemic—A Systematic Review. International Journal of Environmental Research and Public Health, 19(10), Article 10. https://doi.org/10.3390/ijerph19106113
    Raez, M. B. I., Hussain, M. S., & Mohd-Yasin, F. (2006). Techniques of EMG signal analysis: Detection, processing, classification and applications. Biological Procedures Online, 8, 11–35. https://doi.org/10.1251/bpo115
    Raurale, S. A., McAllister, J., & Rincón, J. M. D. (2021). EMG Biometric Systems Based on Different Wrist-Hand Movements. IEEE Access, 9, 12256–12266. https://doi.org/10.1109/ACCESS.2021.3050704
    Rempel, D. M., Harrison, R. J., & Barnhart, S. (1992). Work-related cumulative trauma disorders of the upper extremity. JAMA, 267(6), 838–842.
    Rizzoglio, F., Pierella, C., Santis, D. D., Mussa-Ivaldi, F., & Casadio, M. (2020). A hybrid Body-Machine Interface integrating signals from muscles and motions. Journal of Neural Engineering, 17(4), 046004. https://doi.org/10.1088/1741-2552/ab9b6c
    Robinette, K. M., Daanen, H., & Paquet, E. (1999). The CAESAR project: A 3-D surface anthropometry survey. Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062), 380–386. https://doi.org/10.1109/IM.1999.805368
    Roeleveld, K., Sandberg, A., Stålberg, E. V., & Stegeman, D. F. (1998). Motor unit size estimation of enlarged motor units with surface electromyography. Muscle & Nerve, 21(7), 878–886. https://reurl.cc/jvmR42
    Rojas-Martínez, M., Serna, L. Y., Jordanic, M., Marateb, H. R., Merletti, R., & Mañanas, M. Á. (2020). High-density surface electromyography signals during isometric contractions of elbow muscles of healthy humans. Scientific Data, 7(1), Article 1. https://doi.org/10.1038/s41597-020-00717-6
    Rubin, D. I. (2012). Technical Issues and Potential Complications of Nerve Conduction Studies and Needle Electromyography. Neurologic Clinics, 30(2), 685–710. https://doi.org/10.1016/j.ncl.2011.12.008
    Ryait, H. S., Arora, A. S., & Agarwal, R. (2010). Interpretations of Wrist/Grip Operations From SEMG Signals at Different Locations on Arm. IEEE Transactions on Biomedical Circuits and Systems, 4(2), 101–111. https://doi.org/10.1109/TBCAS.2009.2037604
    Saberi, H. R., Rabiei, H., Zare, A., Jazari, M. D., & Malakoutikhah, M. (2022). Analysis of the research subjects and hot topics of occupational diseases through the Web of Science from 1975 to 2021. Frontiers in Public Health, 10, 1009203. https://doi.org/10.3389/fpubh.2022.1009203
    Sato, W., Murata, K., Uraoka, Y., Shibata, K., Yoshikawa, S., & Furuta, M. (2021). Emotional valence sensing using a wearable facial EMG device. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-85163-z
    Schram, J. L. D., Robroek, S. J. W., Ots, P., Brouwer, S., Burdorf, A., Zon, S. K. R. van, & Hengel, K. M. O. (2020). Influence of changing working conditions on exit from paid employment among workers with a chronic disease. Occupational and Environmental Medicine, 77(9), 628–633. https://doi.org/10.1136/oemed-2019-106383
    Semprini, M., Cuppone, A. V., Delis, I., Squeri, V., Panzeri, S., & Konczak, J. (2017). Biofeedback Signals for Robotic Rehabilitation: Assessment of Wrist Muscle Activation Patterns in Healthy Humans. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(7), 883–892. https://doi.org/10.1109/TNSRE.2016.2636122
    Shin, J.-H., Kim, M.-Y., Lee, J.-Y., Jeon, Y.-J., Kim, S., Lee, S., Seo, B., & Choi, Y. (2016). Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: A single-blinded, randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 13(1), 17. https://doi.org/10.1186/s12984-016-0125-x
    Shiri, R., Viikari-Juntura, E., Varonen, H., & Heliövaara, M. (2006). Prevalence and Determinants of Lateral and Medial Epicondylitis: A Population Study. American Journal of Epidemiology, 164(11), 1065–1074. https://doi.org/10.1093/aje/kwj325
    Shneiderman, B. (1987). Designing the user interface strategies for effective human-computer interaction. ACM SIGBIO Newsletter, 9(1), 6. https://doi.org/10.1145/25065.950626
    Shneiderman, B., & Plaisant, C. (2010). Designing the user interface: Strategies for effective human-computer interaction. Pearson Education India. https://reurl.cc/Ry96je
    Suzuki, H., Conwit, R. A., Stashuk, D., Santarsiero, L., & Jeffrey Metter, E. (2002). Relationships between surface-detected EMG signals and motor unit activation. Medicine & Science in Sports & Exercise, 34(9), 1509. https://reurl.cc/ZyNYkV
    Szyszka-Sommerfeld, L., Machoy, M., Lipski, M., & Woźniak, K. (2019). The Diagnostic Value of Electromyography in Identifying Patients With Pain-Related Temporomandibular Disorders. Frontiers in Neurology, 10. https://www.frontiersin.org/articles/10.3389/fneur.2019.00180
    Tabassum F., Verropoulou G., Tsimbos C., Gjonca E., & Breeze E. (2009). Socio-economic inequalities in physical functioning: A comparative study of English and Greek elderly men. Ageing & Society, 29(7), 1123–1140. https://doi.org/10.1017/S0144686X09008812
    Taylor, P. (2013). Older Workers in an Ageing Society: Critical Topics in Research and Policy. Edward Elgar Publishing.
    TC Labs LLC. (2001). Size USA Data | Made-To-Measure Garments And Design Software. [TC]2 Labs LLC. http://www.tc2.com/size-usa.html
    Uhl, T.L., & Madaleno J. A. (2001). REHABILITATION CONCEPTS AND SUPPORTIVE DEVICES FOR OVERUSE INJURIES OF THE UPPER EXTREMITIES. Clinics in Sports Medicine, 20(3), 621–639. https://doi.org/10.1016/S0278-5919(05)70273-8
    Valenzuela, M., & Bordoni, B. (2023). Anatomy, Shoulder and Upper Limb, Hand Palmar Interosseous Muscle. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK537165/
    Walker-Bone, K., Palmer, K. T., Reading, I., Coggon, D., & Cooper, C. (2012). Occupation and epicondylitis: A population-based study. Rheumatology, 51(2), 305–310. https://doi.org/10.1093/rheumatology/ker228
    Winkelmann, Z. K., Eberman, L. E., & Games, K. E. (2020). Telemedicine Experiences of Athletic Trainers and Orthopaedic Physicians for Patients With Musculoskeletal Conditions. Journal of Athletic Training, 55(8), 768–779. https://doi.org/10.4085/1062-6050-388-19
    Yan, Y-H., Hsu, S-F., Fang, S-C., Kung C-M., & Mo L-R. (2009). Study of Labor Occupational Disease and Occupational Injury Medical Resource Spending. Chinese Journal of Occupational Medicine, 16(3), 183–192. https://doi.org/10.30027/CJOM.200907.0003
    Yildiz, B., Schuring, M., Knoef, M. G., & Burdorf, A. (2020). Chronic diseases and multimorbidity among unemployed and employed persons in the Netherlands: A register-based cross-sectional study. BMJ Open, 10(7), e035037. https://doi.org/10.1136/bmjopen-2019-035037
    Zhang, L., Kumar, K. S., He, H., Cai, C. J., He, X., Gao, H., Yue, S., Li, C., Seet, R. C.-S., Ren, H., & Ouyang, J. (2020). Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nature Communications, 11(1), Article 1. https://doi.org/10.1038/s41467-020-18503-8

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE