簡易檢索 / 詳目顯示

研究生: 徐菁卿
Hsu, Jing-Ching
論文名稱: 蜂巢狀奈米金屬氧化物觸媒催化以氫為還原劑之一氧化氮還原反應
Monolithic catalyst Coated with Nano Metal-oxides for NO Reduction with H2 as a Reducing Agent
指導教授: 翁鴻山
Weng, Hung-Shan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 106
中文關鍵詞: 蜂巢狀觸媒溶膠凝膠披覆法一氧化氮還原反應
外文關鍵詞: Sol-gel coating, catalytic reduction of NO, Monolithic catalyst
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   蜂巢狀觸媒應用於廢氣處理非常廣泛,因其蜂巢形的結構,可以降低系統之壓損、其觸媒層不會因流體高速通過觸媒床而產生磨損,可直接用為反應器。另一方面奈米粒子製造技術,可用來製備高性能之觸媒,跟以傳統製程製造的工業觸媒相比較,使用該技術所製得之觸媒,其活性及選擇性都高出許多,而且能夠於較低溫度下進行反應,降低操作時所消耗的能量,是個值得研發的領域。

      本論文主要是研究在蜂巢狀陶瓷上,先以洗覆法披覆一層奈米金屬氧化物擔體,再以沉積沈澱法在其上担載活性物質之前驅體製成觸媒後,用於以氫氣為還原劑之一氧化氮還原反應,探討各種操作條件對轉化率之影響。同時根據對觸媒所作物性的鑑定結果,探究影響觸媒活性的因素,並從中篩選最適合之觸媒以為後續研究之用。

      實驗結果顯示,蜂巢狀觸媒披覆層上之金屬氧化物担體的種類、含量與製備方式及活性物質(金屬氧化物)的種類、製備製備方式煅燒溫度、反應前還原處理,都會影響蜂巢狀觸媒的性能。活性測試結果顯示,以溶膠凝膠披覆法披覆γ-Al2O3作為担體,再以沉積沈澱法負載銅含量為14 wt%之蜂巢狀觸媒活性最佳。

      由BET分析得知,溶膠凝膠披覆以500℃煅燒所製備之γ-Al2O3具有較大之表面積,是此氧化物擔體催化活性會優於其他方法所製備γ-Al2O3的原因之一。由XRD分析得知,以凝膠披覆法所製備之氧化鋁粒子較小,也可形成所需氧化物之晶相。並且由SEM照片得知,不管以溶膠凝膠披覆法或檸檬酸膠溶法皆可製備出奈米級γ-氧化鋁擔體,但粒徑會不同。

      最後本研究針對粉粒狀觸媒與蜂巢狀觸媒作活性測試及穩定性測試。所得之結果可以證明蜂巢狀觸媒用於催化一氧化氮還原反應具有應用的潛力。

     Monolithic catalysts have been widely applied to abate exhaust gases. Because of the shape, the honeycomb gives a low pressure drop and its catalyst layer does not attrition the fluid.It can be used as a reactor directly.On the other hand,nano-particle technology is appropriate for producing high performance catalysts. The nano- catalysts prossess a markedly higher activity and selectivity compared with the conventional ones. The nano-catalysts can be also used for reactions at relativity low temperatures, thereby reducing energy consumption.

     In this study, for catalyzing the reduction of nitric oxide with hydrogen as a reducing agent, the cordierite monolith was coated with several kinds of supported metal oxides first. Then the activities of the prepared catalysts were evaluated by a monolithic reactor.The best catalyst was screened from those prepared. The causes for different activities were also closely examined basing on the result of catalyst characterization.

     Experimental results indicate that active species of coating layer,support of coating layer,method of preparing the support, calcination temperature,and pretreatment all are important factors affecting catalyst activity. The results of activity test indicate that coating a γ-alumina layer with sol-gel coating method and loading 14 wt% copper with deposition-precipitation method give the highest activity.

     The surface area of γ-Al2O3/monolith,of which γ-Al2O3 was made by sol-gel coating and calcined at 500℃, is the largest and the catalyst thus prepared is more active than those prepared by other methods.The XRD patterns, reveal that the particle-size of alumina prepared with sol-gel coating is smaller then those prepared by another method. The SEM graphs show that the sizes of γ-Al2O3 particles prepared by various methods are all in the nano range.

     At the end of this study, the activities and stabilities of the powder catalyst and the monolithic catalyst were compared. The results show that monolithic catalyst has a better performance and hence has a potential for being applied to air pollution control.

    中文摘要------------------------------------------------------------------------I 英文摘要-----------------------------------------------------------------------Ⅲ 目錄---------------------------------------------------------------------------Ⅵ 表目錄-------------------------------------------------------------------------Ⅸ 圖目錄-------------------------------------------------------------------------Ⅹ 第一章 緒論---------------------------------------------------------------------1 1-1研究緣起-----------------------------------------------------------------1 1-2 空氣污染種類------------------------------------------------------------2 1-3 氮氧化物的特性與行程----------------------------------------------------3 1-4 氮氧化物處理技術--------------------------------------------------------6 1-4-1 燃燒控制技術--------------------------------------------------------6 1-4-2 後燃燒控制技術------------------------------------------------------8 1-5 奈米材料在觸媒上之應用-------------------------------------------------11 1-5-1 奈米粒子的基本性質-------------------------------------------------12 1-5-2 奈米粒子之應用-----------------------------------------------------15 1-6 研究目的---------------------------------------------------------------20 第二章 蜂巢狀觸媒簡介與文獻回顧------------------------------------------------22 2-1 前言-------------------------------------------------------------------22 2-2 蜂巢狀擔體種類---------------------------------------------------------23 2-2-1 低表面積擔體-------------------------------------------------------23 2-2-2 高表面積擔體-------------------------------------------------------24 2-2-3 金屬擔體-----------------------------------------------------------24 2-2-4 陶瓷擔體之製備-----------------------------------------------------26 2-3 蜂巢狀觸媒製備---------------------------------------------------------27 2-3-1蜂巢式陶瓷載體披覆擔體氧化物各種方法------------------------------28 2-3-2 蜂巢狀擔體觸媒層活性金屬之担載-----------------------------------30 2-4 蜂巢狀觸媒之應用----------------------------------------------------------33 2-4-1 傳統應用---------------------------------------------------------33 2-4-2 新興應用---------------------------------------------------------35 第三章 觸媒之製備與晶相形態物性之鑑定-----------------------------------------38 3-1 前言------------------------------------------------------------------38 3-2 篩選披覆層較佳之觸媒擔體氧化物----------------------------------------38 3-3 觸媒晶相鑑定----------------------------------------------------------46 3-4 觸媒顆粒之形態--------------------------------------------------------48 3-5 結果------------------------------------------------------------------49 3-6 表面積分析------------------------------------------------------------57 第四章 觸媒反應性能測試-------------------------------------------------------63 4-1 前言------------------------------------------------------------------63 4-2 實驗設備與裝置--------------------------------------------------------63 4-2-1 實驗設備----------------------------------------------------------63 4-2-2 實驗裝置----------------------------------------------------------63 4-3 觸媒活性測試----------------------------------------------------------67 4-3-1 前言---------------------------------------------------------------67 4-3-2 實驗步驟----------------------------------------------------------67 4-4 結果與討論-------------------------------------------------------------68 4-4-1 篩選觸媒層較佳金屬氧化物擔體觸媒-----------------------------------69 4-4-2 蜂巢狀觸媒長度對轉化率的影響---------------------------------------70 4-4-3 篩選較佳奈米擔體披覆方法對活性的影響-------------------------------71 4-4-4不同銅金屬含量對CuO/γ-Al2O3蜂巢狀觸媒活性的影響--------------------72 4-4-5 煅燒溫度對蜂巢狀觸媒活性之影響-------------------------------------73 4-4-6 金屬銅直接担載於蜂巢狀陶瓷之活性測試-------------------------------74 4-5 前處理對蜂巢狀觸媒活性之影響-------------------------------------------75 4-6 進料濃度比對蜂巢狀觸媒活性之影響---------------------------------------76 4-7 蜂巢狀觸媒與粉粒體觸媒活性之比較---------------------------------------78 4-8 蜂巢狀觸媒穩定性測試---------------------------------------------------78 第五章 結論與未來研究方向-----------------------------------------------------97 5-1結論-------------------------------------------------------------------97 5-2未來研究方向與建議----------------------------------------------------100 參考文獻---------------------------------------------------------------------102

    1. A van. De Riet, H. vonk, Xu Xiaoding, E. Otten, A. Cylbulski, A.
    Stankiewicz, R. Edvinsson and J. A. Moulijn, React. Kinet. Catal. Lett.
    60, 339, 1997.
    2. Addiego, W. P.; Lachman, I. M.; Patil, M. D.; Williams, J. L.; Zaun, K. E., US
    Patent 5,212,130, 1993.
    3. Annika Wahlberg; Lars J. Pettersson; Karin Brunce; Martin Andersson; Kjell
    Jansson; Appl. Catal. B, 23, 271, 1999.
    4. Beauseigneur, P. A.;Lachman, I.M.; US Patent 5,334,570, 1994.
    5. Boger, T.; Heibel, A. K.; Sorensen, C. M.; Ind. Eng. Chem. Res, 43, 4602,
    2004.
    6. Bosch, H., and Janssen, F.,Catal. Today, 171, 499, 1987.
    7. Blachou, V.; Goula, D.; Phillippopoulos, C.; Ind. Eng. Chem. Res.; 31, 364,
    1992.
    8. Birringer, R. et al.; Trans; Jpn. Inct, Metal. Suppl., 29, 1986.
    9. Chang, C. C.; Weng, H. S.; Ind. Eng. Chem. Res.; 31, 1651, 1992.
    10. Chang, C. C.; Weng, H. S.; Ind. Eng. Chem. Res.; 24, 267, 1993.
    11. Chang, C. C.; Weng, H. S.; Ind. Eng. Chem. Res.; 32, 2930, 1993 de Jong,
    K. P.; Stud. Surf. Sci. Catal.; 63, 19, 1991.
    12. Farrauto R.J., Voss K., Appl. Catal. B 10, 29, 1996.
    13. Hamad, A. H.; Doctor of Philosophy; Texas A&M University; 1999.
    14. Heck R. M., Farrauto R. J.; Catalytic Air Pollution Control: Commercial
    Technology, Wiley, New York, 1995.
    15. Heck R.M., Farrauto R.J.; CATTECH December 117,1997.
    16. Hepburn, J. S.; Strenger, H. G.; Lyman, C. E.; Appl. Catal., 55, 287, 1989.
    17. Hepburn, J. S.; Strenger, H. G.; Lyman, C. E.; Appl. Catal., 56, 107, 1998.
    18. Irandoust, S.; Andersson, B.,Catal. Rev.-Sci. Eng. 30, 314, 1988.
    19. Jesús Blanco; Pedro Avila; Silvia Silvia Suárez; Malcolm Yates; Chem. Eng. J.
    97, 1, 2004.
    20. John W. Geus, Joep C. van Giezen, Catal. Today, 47, 169, 1999.
    21. John W. Geus; L. M. Knijff; R. H. Bolt; R. van Yperen; A. J. van Dillen,
    Stud. Surf. Sci. Catal.; 63, 119, 1991.
    22. Jimmie L. Williams; Catal. Today, 69, 317, 2001.
    23. Lachman, I. M.; Golino, C.; US Patent 4,657,880, 1987.
    24. Liang, J. J., and Weng, H. S., J. Catal., 140, 302, 1993.
    25. Liang, J. J., and Weng, H. S., J. Catal., 140, 2563, 1993.
    26. Lyubov A. Isupova; Galina M. Alikina; Olga I. Snegurenko; Vladislav A.
    Sadykov; Appl. Catal. B: 21, 171, 1999.
    27. Klinghoffer, A. A.; Cerro, R. L.; Abraham, M. A.; Catal. Today, 40, 59,
    1998.
    28. Knijff, L. M., Bolt, R. H., van Yperen, R., van Yperen, R., Stud. Surf. Sci.
    Catal., 63, 165, 1991.
    29. Kapteijn, F.; Heiszwolf, J. J.; Nijhuis, T. A.; Moulijn, J. A.; Aspects and
    Prospects. Cattech 3, 24, 1999.
    30. Kolb, W.B., et. al.; Chem. Eng. Prog., 63, 1993.
    31. Miller, G. T.; Jr.; Environmental Science, Fourth ed.; California,
    Wadsworth, 1992.
    32. M. Campanati, G. Fornasari, A. Vaccari, Catal. Today, 77, 299, 2003.
    33. Nijhuis, T. A.; Kreutzer, M. T.; Romijn, A. C. J.; Kapteijn, F.; Moulijn, J.
    A.; Chem. Eng. Sci. 56, 823, 2001.
    34. Nijhuis, T. A.; Kreutzer, M. T.; Romijn, A. C. J.; Kapteijn, F.; Moulijn, J.
    A.;Catal. Today, 66, 157, 2001.
    35. O. Korotkikh, R. Farrauto, Catal. 62, 2, 2002.
    36. Pio Forzatti; Daniele Ballardini; Lorenzo Sighicelli; Catal. Today, 41, 87,
    1998.
    37. Robert, J. Farrauto; React. Kinet. Catal. Lett., 60, 233, 1997.
    38. Ronald, M. Heck; Suresh, Gulati; Robert, J. Farrauto; Chem. Eng. J.,
    82, 149, 2001.
    39. Shiaw-Tzong Shen and Hung-Shan Weng; Ind. Eng. Chem. Res., 37, 2654, 1998.
    40. Shiaw-Tzong Shen and Hung-Shan Weng; J. Chin. Inst. Chem. Eng., 29,
    211, 1998.
    41. Shantanu Roy, Achim K. Heibel, Wei Liu, Thorsten Boger, Chem. Eng. Sci., 59,
    957, 2004.
    42. Theo Vergunst; Freek Kapteijn; Jacob A. Moulijn; Appl.Catal. A, 213
    , 179, 2001.
    43. Wei Liu; William P. Addiego.; Charles M. Sorensen; Ind. Chem. Res., 41, 3131,
    2002.
    44. Xu Xiaoding; H, Vonk; A.C.J.M. van de Riet; A. Cybulski; A. Stankiewicz; J.
    A. Moulijn; Catal. Today, 30, 91, 1996.
    45. 吳榮宗, 工業觸媒概論(增訂版), 1989.
    46. 胡維民, 國立成功大學化工研究所碩士論文, 2002.
    47. 柯子真, 國立成功大學化工研究所碩士論文, 2003.
    48. 沈孝宗, 國立成功大學化工研究所博士論文, 1998.
    49. 吳國卿, 董玉蘭, 化工資訊,42, 1999.5.
    50. 蔣孝澈, 陳光龍, 化工, 第四十六卷第三期, 67, 1999.
    51. 顏世偉, 國立成功大學化工研究所碩士論文, 2003.
    52. 陳寶丞, 國立成功大學化工研究所碩士論文, 2001.
    53. 黃琬婷, 國立成功大學化工研究所碩士論文, 2000.
    54. 胡興中, 觸媒原理與應用, 2000.

    下載圖示 校內:2008-06-27公開
    校外:2008-06-27公開
    QR CODE