簡易檢索 / 詳目顯示

研究生: 楊銘勳
Yang, Ming-Xun
論文名稱: 成長於矽基材之一維奈米結構接面效應對場發射特性影響研究
Simulation Study of Junction Effect on Field Emission from One-dimensional Nanostructure Grown on Silicon Substrate
指導教授: 藍永強
Lan, Yung-Chiang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 148
中文關鍵詞: 場發射接面效應
外文關鍵詞: Field Emission, Junction Effect
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   現今眾多新世代顯示技術的崛起,場發射顯示技術亦佔有重要的一席之地,本論文以電腦數值模擬方法探討成長於矽基材之一維奈米結構接面效應對場發射特性影響,研究中採用古典半導體物理傳輸方程式描述載子在一維奈米結構中的運動情形,並以Fowler-Nordheim模型來模擬場發射現象,首先探討成長於摻有雜質矽基材上一維奈米結構的場發射特性,由模擬結果顯示當矽基材為P型摻雜時,窄能隙一維奈米結構在高施加電壓區的場發射電流出現了飽和現象,然而寬能隙一維奈米結構,反倒是增強其場發射電流,本研究接續探討三根奈米結構在相異高度下,奈米結構彼此間交互作用對於場發射特性的影響,於模擬結果顯示,當奈米結構彼此間高度產生差異時,較低奈米結構受鄰近較高奈米結構影響,使得場發射特性產生反轉現象,此外,本研究亦討論奈米結構與矽基材界面固定電荷對場發射特性的影響,由模擬結果顯示,界面固定正電荷對於窄能隙奈米結構場發射電流幾無影響,而界面固定負電荷反倒是減弱其場發射電流,然而對於寬能隙奈米結構,界面固定正電荷反而增強了場發射電流,而界面固定負電荷同樣地減弱其場發射電流。

      Field emission display takes an important role in recent display technology. In this present study, junction effect on field emission from one-dimensional nanostructure grown on silicon substrate has been investigated by computer simulation. The classical transport equation is used to describe the carrier transportation in the material. The field emission at the emitter-vacuum interface is modeled by the Fowler-Nordheim equation. First, we discuss the field emission properties of the one-dimensional nanostructure grown on doped silicon substrate. The result of simulation reveals that for narrow-band-gap material, the p-type Si substrate will limit the field emission current in the high applied voltage region but for wide-band-gap material, the field emission current will be enhanced due to the p-type Si substrate. Continuously, we discuss the effect between nanostructures on field emission from three nanostructures with different height. From the result of simulation, we can realize that the field emission properties will reverse when the nanostructure with lower height is influenced by that with higher height. Furthermore, we analyze the effect of fixed charge among substrate-nanostructure interface on field emission. From the result of simulation, we can understand that for narrow-band-gap material, the positive fixed charge has no influence on the field emission current but the negative fixed charge will weaken the field emission current. On the contrary, for wide-band-gap material, the positive fixed charge will enhance the field emission current, but the negative fixed charge will still weaken the field emission current.

    § 中文摘要......................................................Ⅰ § Abstract......................................................Ⅱ § 誌謝..........................................................Ⅲ § 目錄..........................................................Ⅳ § 表目錄........................................................Ⅵ § 圖目錄........................................................Ⅶ 第一章 簡介 1-1 平面顯示器簡介.............................................2 1-2 場發射顯示器簡介...........................................5 1-3 研究目的..................................................10 第二章 文獻回顧 2-1 場發射理論研究回顧........................................12 2-2 場發射實驗研究回顧........................................13 第三章 場發射原理與模擬研究方法 3-1 場發射原理................................................18 3-2 場發射模擬方法............................................23 3-2-1 ISE TCAD模擬軟體程式..................................23 3-2-2 研究方法..............................................24 3-2-3 模擬參數設定..........................................27 3-2-3a 一維奈米結構模擬模型結構與尺寸設定.................28 3-2-3b 三根一維奈米結構模擬模型結構與尺寸設定.............29 3-2-3c 界面固定電荷一維奈米結構模擬模型結構與尺寸設定.....31 第四章 成長於矽基材之一維奈米結構其場發射特性模擬結果與討論 4-1 一維奈米結構模擬模型格網結構..............................33 4-2 一維奈米結構在不同摻雜矽基材之場發射特性模擬與分析........34 4-2-1 奈米碳管(CNTs)模擬結果與分析..........................34 4-2-2 矽奈米線(SiNWs)模擬結果與分析.........................51 4-2-3 碳氮化矽(SiCN)模擬結果與分析..........................65 4-2-4 三種材料的場發射特性比較..............................77 第五章 三根一維奈米結構其相異高度對場發射特性影響模擬結果與討論 5-1 三根一維奈米結構模擬模型格網結構..........................79 5-2 三相異高度之一維奈米結構場發射特性模擬與分析..............81 5-2-1 三根等高奈米結構模擬結果與分析........................81 5-2-2 中間較兩側為高奈米結構模擬結果與分析..................91 5-2-3 中間較兩側為低奈米結構模擬結果與分析.................101 5-2-4 增大兩奈米結構間距模擬結果與分析.....................110 第六章 陷於奈米結構與矽基材界面電荷對場發射特性的影響結果與討論 6-1 界面固定電荷一維奈米結構模擬模型格網結構.................121 6-2 界面固定電荷一維奈米結構場發射特性模擬與分析.............122 6-2-1 奈米碳管(CNTs)模型模擬結果與分析.....................122 6-2-2 碳氮化矽(SiCN)模型模擬結果與分析.....................132 第七章 結論...................................................142 參考文獻.......................................................144

    [1] 財團法人工業技術研究院, http://www.itri.org.tw/index.jsp
    [2] A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, Appl.
    Phys. Lett. 76, 3813 (2000).
    [3] C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, J. Appl.
    Phys. 47, 5248 (1976).
    [4] N. Liu, Z. Ma, and X. Chu, J. Vac. Sci. Technol. B 12, 1712 (1994).
    [5] A. A. Dadykin, and A. G. Naumovets, Diamond and Related Materials. 5, 771
    (1996).
    [6] E. S. Kohn, Appl. Phys. Lett. 41, 76 (1970).
    [7] R. J. Harvery, R. A. Lee, and A. J. Miller, IEEE Trans. Electron Devices.
    38, 2323 (1991).
    [8] N.Liu, Z. Ma, and X.Chu, J. Vac Sci. Technol. B. 12, 1712 (1994).
    [9] A. A. Dadykin, and A. G. Naumovets, Diamond and Related Materials. 5, 771
    (1996).
    [10] A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, Appl.
    Phys. Lett. 76, 3813 (2000).
    [11] Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, and A. R. Krauss,
    Appl. Phys. Lett. 70, 3308 (1997).
    [12] W. A. de Heer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995).
    [13] Y. Satio, K. Hamaguchi, S. Uemura, K. Uchida, Y. Tasaka, F. Ikazaki,
    M. Yumura, A. Kasuya, and Y. Nishina, Appl. Phys. A 67, 95 (1998).
    [14] J. M. Bonard, J. P. Salvetat, T. Stockli, Walt A. de Heer, L. Forro, and
    A. Chatelain, Appl. Phys. Lett. 73, 918 (1998).
    [15] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and
    H.Dai, Science 283, 512 (1999).
    [16] S. Uemura , J. Yotani , T. Nagasako , H. Kurachi , H. Yamada , T. Ezaki ,
    T. Maesoba , T. Nakao , Y. Saito , and M. Yumura , IDMC , 75 (2003).
    [17] 科學發展期刊,2004年10月 382期.
    [18] R. K. Fowler and L. W. Nordheim, Proc. Roy. Soc. (London), A 119, 173
    (1928).
    [19] L. Nordheim, Proc. Roy. Soc. (London), A 121, 626 (1928).
    [20] E. W. Müller, Ergeb. Exakt. Naturwiss 27, 290 (1953).
    [21] R. H. Good and E. W. Müller, Handbuch der physik 21, 178 (1956).
    [22] W. P. Dyke and W. W. Dolan, Advances in Electronics and Electron Physics,
    Vol. 8, Academic Press: New York, p. 89, 1956.
    [23] C. A. Spindt, C. E. Holland, I. Brodie, J. B. Mooney, and E. R.
    Westerberg, IEEE Trans. Electron Devices ED-36, 225 (1989).
    [24] E. L. Murphy and R. H. Good, Phys. Rev. 102, 1464 (1956).
    [25] P. H. Cutler and D. Nagy, Surf. Sci. 3, 71 (1964).
    [26] H. Q. Nguyen, P. H. Cutler, T. E. Feuchtwang, N. Miskovsky, and A. A.
    Lucas, Surf. Sci. 160, 331 (1985).
    [27] A. Mayer and J. P. Vigneron, J. Phys. Condens. Matter 10, 896 (1998).
    [28] J. He, P. H. Cutler, N. M. Miskovsky, T. E. Feuchtwang, T. E. Sullivan,
    and M. Chung, Surf. Sci. 241, 348 (1991).
    [29] P. H. Cutler, J. He, J. Miller, N. M. Miskovsky, B. Weiss, and T. E.
    Sullivan, Prog. Surf. Sci. 42, 169 (1993).
    [30] R. G. Forbes, J. Vac. Sci. Technol. B 17, 526 (1999).
    [31] R. G. Forbes, J. Vac. Sci. Technol. B 17, 534 (1999).
    [32] S. G. Christov, Phys. Stat. Sol. 17, 11 (1966).
    [33] J. W. Gadzuk and E. W. Plummer, Rev. Mod. Phys. 45, 487 (1973).
    [34] R. Stratton, Phys. Rev. 135, A794 (1964).
    [35] G. N. Fursey, Appl. Surf. Sci. 94, 44 (1996).
    [36] R. Gomer, Field Emission and Field Ionization, American Institute of
    Physics: New York, 1993. American Vacuum Society Classics.
    [37] A. Modinos, Field, Thermionic, and Secondary Electron Emission
    Spectroscopy, Plenum: New York, 1984.
    [38] R. F. Greene and H. F. Gray, p-n junction controlled field emitter array
    cathodes, US Patent 4513308 (1985).
    [39] Wei Zhu, “Vacuum Microelectronics”, by John Wiley & Sons, Inc (2001).
    [40] T. Hirano, S. Kanemaru, H. Tanoue, and J. Itoh, Jpn. J. Appl. Phys. 34,
    6907 (1995).
    [41] T. Matsukawa, S. Kanemaru, K. Tokunaga, and J. Itoh, J. Vac. Sci.
    Technol. B, Vol. 18, 1111 (2000).
    [42] C. S. Chang, S. Chattopadhyay, L. C. Chen, K. H. Chen, C. W. Chen,Y. F.
    Chen, R. Collazo and Z. Sitar, PHYSICAL REVIEW B 68, 125322 (2003)
    [43] T. K. Ku, M. S. Chen, C. C. Wang, M. S. Feng, L. J. Hsieh, C. M. Huang,
    and H. C. Cheng, Jpn. J. Appl. 35, 5789 (1995).
    [44] A. Modinos, Plenum Press, New York (1938).
    [45] C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, “A Physically Based
    Mobility Model for Numerical Simulation of Nonplanar Devices”, IEEE
    Transactions on CAD, Vol. 7, no. 11, pp. 1164–1171, 1988.
    [46] G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility
    against carrier concentration in Arsenic-, Phosphorus- and Boron-doped
    Silicon”, IEEE Transactions on Electron Devices, Vol. ED-30, pp. 764–
    769, 1983.
    [47] C. Canali, G. Majni, R. Minder, and G. Ottaviani, “Electron and hole
    drift velocity measurements in Silicon and their empirical relation to
    electric field and temperature,” IEEE Transactions on ElectronDevices,
    Vol. ED-22, pp. 1045–1047, 1975.
    [48] J. W. Slotboom and H. C. de Graaff, “Measurements of Bandgap Narrowing
    in Si Bipolar Transistors” , Solid-State Electronics, Vol. 19, pp. 857–
    862, 1976.
    [49] J. W. Slotboom and H. C. de Graaff, “Bandgap Narrowing in Silicon
    Bipolar Transistors”, IEEE Transactions on Electron Devices, Vol. ED-24,
    no. 8, pp. 1123–1125, 1977.
    [50] J. W. Slotboom, “The pn-Product in Silicon”, Solid-State Electronics,
    Vol. 20, pp. 279–283, 1977.
    [51] D. B. M. Klaassen, J. W. Slotboom, and H. C. de Graaff, “Unified
    apparent bandgap narrowing in n- andp-type Silicon,” Solid-State
    Electronics, Vol. 35, no. 2, pp. 125–129, 1992.
    [52] 藍永強, 博士論文, 真空三極體結構研究-從場發射真空微三極體到反射式三極體之虛陰極振盪器, 國立清華大學, 民國91年。
    [53] 林自強, 碩士論文, 奈米碳管場發射元件聚焦特性之電腦模擬研究, 國立清華大學, 民國93年。

    下載圖示
    2011-07-07公開
    QR CODE