| 研究生: |
蕭博勳 shiau, bo-shiun |
|---|---|
| 論文名稱: |
鋼結構抗彎梁柱接頭在高溫環境下之行為研究 A Study on Structural Behavior of Steel Beam-Column Moment Connection in Fire Environment |
| 指導教授: |
邱耀正
Chiou, Yaw-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 169 |
| 中文關鍵詞: | 梁柱 、定溫加載 、定載加溫 、耐火鋼 |
| 外文關鍵詞: | fire, beam, column |
| 相關次數: | 點閱:71 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文依實際結構尺寸,使用ABAQUS軟體,進行有限元素數值模擬,探討鋼結構抗彎梁柱接頭在高溫環境中的行為;在高溫環境下材料之組成律,採用SN490B耐震B級鋼與SN490C-FR耐震C級耐火鋼等兩種鋼材之材料性質,熱傳性質採用Eurocode-3與相關文獻建議之參數,透過熱傳數值模擬了解爐溫與試體間溫度分佈差異,並接續熱傳數值模擬資料,進行結構數值模擬,以了解抗彎矩梁柱接頭在高溫環境下之行為,同時藉由國內I型柱I型梁高溫載重實驗、國外簡支梁高溫載重定載加溫實驗,進行驗證本文數值模式之可行性。
論文架構主要敘述鋼材的高溫材料行為、數值模擬分析、數值分析模式驗證、熱傳分析結果、定溫加載與定載加溫分析結果,分析主體採用SN490C-FR部份取代SN490B鋼材的箱型柱I型梁,撘配集中載重與均佈載重兩種載重形式,共6個Case,並依數值分析模式探討抗彎矩梁柱接頭在高溫環境下之行為,以了解SN490C-FR耐火鋼對抗彎矩梁柱接頭在高溫環境下所增加之效益與SN490C-FR使用上建議之改善措施。
This text presents the results of a numerical study,using ABAQUS, to investigate the structural behavior of steel beam-column moment connection in fire environment in which two materials,SN490B and SN490C-FR are consider. The material properties of steel in high temperature proposed by material test and relevant documents are used in this study. The feasibility of ABAQUS numerical simulation model have been proven by ABRI’s I column-I beam moment connection fire experiment and Rubert and Schaumann’s simplly supported beam fire experiment. The focus of this study is using the steel material of SN490C-FR to replace that of SN490B on the box-column I-beam. One can obtain the relation of the loading-displacement –temperature and moment-rotation-temperature of the tested specimens moreover comparison of the effect of the additional SN490C-FR by defined the utmost of the temperature and loading wase also preformed in this study.
[1] ABAQUS, ABAQUS User’s Manual, ABAQUS Version 6.5
[2] Al-Jabri, K.S., Burgess, I.W., and Plank, R.J. ”
Prediction of the Degradation of Connection
Characteristics at Elevated Temperature.” Journal
of Contructional Steel Research, Vol.60, pp.771-781,
2004.
[3] Al-Jabri, K.S., Burgess, I.W., Lennon T., and Plank,
R.J.”Moment-Rotetion-Temperature Curves for Semi-
rigid Joints.” Journal of Contructional Steel
Research” Vol.61, pp.281-303, 2005.
[4] ECCS-Technical Committee 3-Fire Safety of Steel
Structures, “European Recommendations For the Fire
Safety of Steel Structures.” Elsevier Scientific,
New York ,1983.
[5] Eurocode1, ”Basis of Design and Actions on
Structures-Part1.2:General Action-Actions on
Structures Exposed to Fire” (ENV1991-1-2), 1995
[6] Eurocode 3, ”Design of Steel Structures-Part1.2:
General rules-Structural Fire Design.”
(ENV1993-1-2), 1995.
[7] Gardner L., and Ng K.T. ”Temperature Development in
Structural Stainless Steel Sections Exposed to
Fire.” Fire Safety Journal, Vol.41, pp.185-203,
2006.
[8] Iu C.K., and Chan S.L. ”A Simulation-based Large
Deflectin and Inelastic Analysis of Steel Frames
Under Fire.” Journal of Contructional Steel
Research, Vol.60, pp.1495-1524, 2004.
[9] Liu, T.C.H., Fahad M.K., and Davies, J.M. ”
Experimental Investigation of Behaviour of Axially
Restrained Steel Beam in Fire.” Journal of
Contructional Steel Research, Vol.58, pp.1211-1230,
2002.
[10] Li, Q.Q., Jiang, S.C., Yin, Y.Z., Chen K., and Li
M.F. ”Experimental Studies on the Properties of
Constructional Steel at Elevated Temperatures”
ASCE, pp.0733-9445, 2003.
[11] Rubert, A., and Schaumann, P. “Structural Steel and
Plane Frame Assemblies under Fire Actin.” Fire
Safety Journal, Vol.10, pp.173-184, 1986.
[12] William, E. L., Christopher, N. M. and Stephen,
W.B., Physical Propeties of Structural Steels,
Federal Building and Fire Safety Investigation of
the World Trade Center Disaster, National institute
of Standards and Technology, 2005.
[13] Yin, Y.Z., and Wang, Y.C. ”A Numerical Study of
Large Deflection Behaviour of Restrained Steel Beams
at Elevated Temperatures.” Journal of Contructional
Steel Research, Vol.60, pp.1029-1047, 2004.
[14] Yin, Y.Z., and Wang, Y.C. ”Analysis of Catenary
Action in Steel Beams using a Simplified Hand
Calculation Method, Part 1:Theory and Validation
for Uniform Temperature Distribution.” Journal of
Contructional Steel Research, Vol.61, pp.183-211,
2005.
[15] 中國國家標準CNS總號12514,「建築物構造部分耐火試驗
法」,經濟部中央標準局,台灣,2002。
[16] 內政部營建署,「建築技術規則」,內政部營建署網頁,
2007年3月修正版。
[17] 何明錦、陳生金,「鋼結構梁柱接頭高溫載重行為研究」,
內政部建築研究所研究報告,2007。
[18] 林岳山華,「鋼結構梁柱接頭高溫反應之數值模擬」,碩士
論文,國立成功大學土木工程研究所,台南,2005。
[19] 林子賓,「高溫下螺拴孔承壓能力之研究」,碩士論文,國
立成功大學土木工程研究所,台南, 2006。
[20] 連寬宏、王仁佐、蕭邦安、邱耀正,「鋼結構火害反應之數
值模擬」,中華民國第八屆結構工程研討會,2006。
[21] 陳諺輝,「螺拴孔於高溫下承壓行為之量測與數值模擬」,
碩士論文,國立成功大學土木工程研究所,2006。
[22] 莊有清,「鋼材在高溫環境下之行為探討」,碩士論文,國
立成功大學土木工程研究所,台南,2004。
[23] 愛發股份有限公司編著,「ABAQUS實務入門引導」,全國科
技圖書股份有限公司印行,台北,2005年5月初版。
[24] 蔡宗翰,「鋼結構彎矩接頭受火害之行為研究」,碩士論
文,國立成功大學土木工程研究所,台南,2006。
[25] 蕭江碧、張俊哲,「建築技術規則防火安全相關規定增修訂
之研究-第三章部分條文」,內政部建築研究所研究計畫成果
報告,2000。