簡易檢索 / 詳目顯示

研究生: 鍾玟雅
Chung, Wen-Ya
論文名稱: 矽碳複合材料應用於鋰離子電池負極材料之研究
Si / C composite as anode material for lithium ion batteries
指導教授: 黃肇瑞
Huang, Jow-Lay
共同指導教授: 張家欽
Chang, Chia-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 108
中文關鍵詞: 行星式球磨法熱處理SiOxSiOC碳氫樹脂矽碳複合材料負極材料鋰離子電池
外文關鍵詞: planetary ball-milling, heat treatment, silicon, SiOx, SiOC, hydrocarbon resin, Si/C composite, anode material, lithium ion batteries
相關次數: 點閱:144下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以碳氫樹脂為碳材前驅物製備矽碳複合材料,期望透過碳材導電性佳、機械強度高且表面SEI膜較為穩定的優點,以減緩矽材在充放電過程中體積膨脹收縮所帶來的效應,並避免矽直接與電解液接觸形成不穩定SEI膜以及防止矽之間於合金/去合金化反應後發生凝聚現象,另外矽的理論電容量高(3580 mAh/g)可以補足石墨理論電容量較低(372 mAh/g)的問題,兩種材料之間達到互補的作用以發展矽碳複合材料成為未來極具潛力的鋰離子電池負極材料。
    製備矽碳複合材料的方法很多種,本研究選用操作簡易、低成本、可大量製造且對環境友善的行星式球磨法搭配熱處理階段成功製備出矽碳複合材料,研究中主要探討熱處理溫度的變化對矽碳複合材料之影響,藉由活性材料特性分析以及電化學性能分析深入探討,而本研究更進一步改變矽碳複合材料中碳氫樹脂與矽粉之比例。
    本研究製備出以碳為基底作為骨架而奈米晶/非晶矽鑲嵌於其中的矽碳複合材料,並成功改善純矽材前幾圈電容量衰退問題。實驗中隨著熱處理溫度升高使得部分矽氧化程度提升並在矽與碳界面生成Silicon oxycarbide ( SiOC )加強矽碳之間的連結性。矽氧化物( SiOx )以及SiOC材料在充放電過程中會產生不可逆電容,然而生成的不可逆物質在接下來的反應過程中扮演良好的緩衝物,加上SiOx與SiOC材料本身鋰化/去鋰化反應時體積膨脹率小於純矽材,對複合材料結構影響較小,因此本研究成功製備出具有極佳電池循環穩定性的矽碳複合材料,同時兼具高電容量以及快速充放電的能力。

    We successfully synthesize the Si / C composites via a simple planetary ball-milling and heat treatment without high cost and risk of environment pollutions. This study shows that annealing temperature significantly affect oxidation degree and crystallite size of silicon as well as the formation of carbon buffer matrix in Si / C composites. The observed electrochemical performance of CPC / Si composite which was heated to 900 ℃ shows improved capacity (1702 mAh / g for first cycle charge) and good cycling ability ( 1340 mAh / g with 102 % retention after 100 cycles.). Thus, Si / C composites as anode material performs better electrochemical properties.

    中文摘要 I Extended abstract II 致謝 XI 總目錄 XIII 圖目錄 XVI 表目錄 XXIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 第二章 文獻回顧 3 2.1 鋰離子電池發展與應用 3 2.2 鋰離子電池組成與工作原鋰 6 2.3 鋰離子電池負極材料介紹 9 2.3.1 碳負極材料 10 2.3.2 矽負極材料 11 2.3.3 金屬及過渡金屬氧化物負極材料 13 2.4 矽基負極材料的問題 14 2.4.1 活性材料崩解 15 2.4.2 固態電解質界面的形成 16 2.5 矽基負極材料的改善 18 2.5.1 材料尺寸與形貌之改變 18 2.5.2 矽氧化物作為負極材料 21 2.5.3 矽基合金與複合材料 25 2.6 矽碳複合材料應用於負極材料之研究近況 31 2.6.1 矽碳複合材料 31 2.6.2 製備方法與其性能 32 第三章 研究方法與實驗步驟 42 3.1 實驗材料 42 3.2 實驗設備 42 3.3 實驗設計與架構 42 3.4 活性材料的製備 43 3.4.1 ( 1:1 ) CPC / Si 複合材料 43 3.4.2 ( 1:3 ) CPC / Si 複合材料 45 3.5 材料鑑定分析 46 3.5.1 X-ray繞射分析儀 (X-ray diffraction spectrometer : XRD) 46 3.5.2 電子能譜化學分析儀 (Electron Spectroscopy for Chemical Analysis: ESCA) 47 3.5.3 拉曼光譜分析儀 (Raman spectroscopy: Raman) 48 3.5.4 傅立葉轉換紅外線光譜儀 (Fourier transform Infrared spectrometer : FTIR) 49 3.5.5 高解析場發射掃描式電子顯微鏡 (High resolution field emission scanning electron microscopy: FE-SEM) 49 3.5.6 高解析分析電子顯微鏡 (Ultrahigh Resolution Analytical Electron Spectroscopy: HR-AEM) 51 3.5.7 熱重分析儀 (Thermogravimetric analysis, TGA) 52 3.6 鈕扣型半電池組裝及性質測試 52 3.6.1 極片製作 53 3.6.2 電池組裝 53 3.6.3 半電池充放電測試 54 3.6.4 循環伏安法測試 55 3.6.5 交流阻抗測試 55 第四章 結果與討論 60 4.1 活性材料特性分析 60 4.1.1 XRD定性分析 60 4.1.2 Raman分析碳原子結構變化 63 4.1.3 FTIR官能基分析 65 4.1.4 ESCA分析鍵結能貢獻與變化 67 4.1.5 SEM分析表面形貌與顯微結構 76 4.1.6 TEM分析表面形貌與顯微結構 78 4.1.7 TGA矽碳重量比分析 81 4.2 電化學性能分析 83 4.2.1 電池化成行為分析 83 4.2.2 循環壽命充放電測試 87 4.2.3 不同充放電速率測試(C-rate) 93 4.2.4 循環伏安法分析 96 4.2.5 交流阻抗分析測試 99 第五章 結論 100 參考文獻 102

    [1] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, vol. 414, no. 6861, pp. 359-367, 2001/11/01 2001.
    [2] M. D. Bhatt and C. O'Dwyer, "Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes," Physical Chemistry Chemical Physics, 10.1039/C4CP05552G vol. 17, no. 7, pp. 4799-4844, 2015.
    [3] M. R. Palacin, "Recent advances in rechargeable battery materials: a chemist's perspective," Chem Soc Rev, vol. 38, no. 9, pp. 2565-75, Sep 2009.
    [4] N. Spinner, L. Zhang, and W. E. Mustain, "Investigation of metal oxide anode degradation in lithium-ion batteries via identical-location TEM," J. Mater. Chem. A, vol. 2, no. 6, pp. 1627-1630, 2014.
    [5] G. Crabtree, E. Kócs, and L. Trahey, "The energy-storage frontier: Lithium-ion batteries and beyond," MRS Bulletin, vol. 40, no. 12, pp. 1067-1078, 2015.
    [6] B. N. Loeffler, D. Bresser, S. Passerini, and M. Copley, "Secondary Lithium-Ion Battery Anodes: From First Commercial Batteries to Recent Research Activities," Johnson Matthey Technology Review, vol. 59, no. 1, pp. 34-44, 2015.
    [7] M. Gu, Y. He, J. Zheng, and C. Wang, "Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges," Nano Energy, vol. 17, pp. 366-383, 2015.
    [8] M. Gu et al., "Electronic Origin for the Phase Transition from Amorphous LixSi to Crystalline Li15Si4," ACS Nano, vol. 7, no. 7, pp. 6303-6309, 2013/07/23 2013.
    [9] M. Winter and J. O. Besenhard, "Electrochemical lithiation of tin and tin-based intermetallics and composites," Electrochimica Acta, vol. 45, no. 1, pp. 31-50, 1999/09/30/ 1999.
    [10] C. K. Chan, X. F. Zhang, and Y. Cui, "High Capacity Li Ion Battery Anodes Using Ge Nanowires," Nano Letters, vol. 8, no. 1, pp. 307-309, 2008/01/01 2008.
    [11] J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacin, "Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions," Adv Mater, vol. 22, no. 35, pp. E170-92, Sep 15 2010.
    [12] J. Vetter et al., "Ageing mechanisms in lithium-ion batteries," Journal of Power Sources, vol. 147, no. 1-2, pp. 269-281, 2005.
    [13] J. W. Choi and D. Aurbach, "Promise and reality of post-lithium-ion batteries with high energy densities," Nature Reviews Materials, Review Article vol. 1, p. 16013, 03/31/online 2016.
    [14] M. Ko, S. Chae, and J. Cho, "Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries," ChemElectroChem, vol. 2, no. 11, pp. 1645-1651, Nov 2015.
    [15] H. Wu and Y. Cui, "Designing nanostructured Si anodes for high energy lithium ion batteries," Nano Today, vol. 7, no. 5, pp. 414-429, 2012.
    [16] P. Verma, P. Maire, and P. Novák, "A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries," Electrochimica Acta, vol. 55, no. 22, pp. 6332-6341, 2010.
    [17] G. Ramos-Sanchez et al., "Computational Studies of Interfacial Reactions at Anode Materials: Initial Stages of the Solid-Electrolyte-Interphase Layer Formation," Journal of Electrochemical Energy Conversion and Storage, vol. 13, no. 3, pp. 031002-031002-10, 2016.
    [18] M. T. McDowell, S. W. Lee, W. D. Nix, and Y. Cui, "25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries," Adv Mater, vol. 25, no. 36, pp. 4966-85, Sep 25 2013.
    [19] M. Ko, P. Oh, S. Chae, W. Cho, and J. Cho, "Considering Critical Factors of Li-rich Cathode and Si Anode Materials for Practical Li-ion Cell Applications," Small, vol. 11, no. 33, pp. 4058-73, Sep 2 2015.
    [20] W. McSweeney, H. Geaney, and C. O’Dwyer, "Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes," Nano Research, vol. 8, no. 5, pp. 1395-1442, 2015.
    [21] U. Kasavajjula, C. Wang, and A. J. Appleby, "Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells," Journal of Power Sources, vol. 163, no. 2, pp. 1003-1039, 2007.
    [22] X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, "Size-Dependent Fracture of Silicon Nanoparticles During Lithiation," ACS Nano, vol. 6, no. 2, pp. 1522-1531, 2012/02/28 2012.
    [23] Y. Yao et al., "Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life," Nano Lett, vol. 11, no. 7, pp. 2949-54, Jul 13 2011.
    [24] C. K. Chan et al., "High-performance lithium battery anodes using silicon nanowires," Nat Nanotechnol, vol. 3, no. 1, pp. 31-5, Jan 2008.
    [25] B.-C. Yu, Y. Hwa, C.-M. Park, and H.-J. Sohn, "Reaction mechanism and enhancement of cyclability of SiO anodes by surface etching with NaOH for Li-ion batteries," Journal of Materials Chemistry A, vol. 1, no. 15, p. 4820, 2013.
    [26] J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J. Y. Xie, and O. Yamamoto, "SiOx-based anodes for secondary lithium batteries," Solid State Ionics, vol. 152-153, pp. 125-129, 2002/12/01/ 2002.
    [27] Y. Hwa, C.-M. Park, and H.-J. Sohn, "Modified SiO as a high performance anode for Li-ion batteries," Journal of Power Sources, vol. 222, pp. 129-134, 2013.
    [28] B.-C. Yu, Y. Hwa, J.-H. Kim, and H.-J. Sohn, "A New Approach to Synthesis of Porous SiOx Anode for Li-ion Batteries via Chemical Etching of Si Crystallites," Electrochimica Acta, vol. 117, pp. 426-430, 2014.
    [29] A. M. Wilson, J. N. Reimers, E. W. Fuller, and J. R. Dahn, "Lithium insertion in pyrolyzed siloxane polymers," Solid State Ionics, vol. 74, no. 3, pp. 249-254, 1994/12/15/ 1994.
    [30] M. Halim, C. Hudaya, A. Y. Kim, and J. K. Lee, "Phenyl-rich silicone oil as a precursor for SiOC anode materials for long-cycle and high-rate lithium ion batteries," Journal of Materials Chemistry A, vol. 4, no. 7, pp. 2651-2656, 2016.
    [31] J. Shen and R. Raj, "Silicon-oxycarbide based thin film anodes for lithium ion batteries," Journal of Power Sources, vol. 196, no. 14, pp. 5945-5950, 2011.
    [32] L. David, R. Bhandavat, U. Barrera, and G. Singh, "Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries," Nat Commun, vol. 7, p. 10998, Mar 30 2016.
    [33] Z. Sang et al., "SiOC nanolayer wrapped 3D interconnected graphene sponge as a high-performance anode for lithium ion batteries," Journal of Materials Chemistry A, vol. 6, no. 19, pp. 9064-9073, 2018.
    [34] M. Wilamowska-Zawlocka et al., "Silicon oxycarbide ceramics as anodes for lithium ion batteries: influence of carbon content on lithium storage capacity," RSC Advances, vol. 6, no. 106, pp. 104597-104607, 2016.
    [35] X. Liu, M.-C. Zheng, and K. Xie, "Mechanism of lithium storage in Si–O–C composite anodes," Journal of Power Sources, vol. 196, no. 24, pp. 10667-10672, 2011.
    [36] Z. Wu et al., "A Nanostructured Si/SiOC Composite Anode with Volume-Change-Buffering Microstructure for Lithium-Ion Batteries," Chemistry, vol. 25, no. 10, pp. 2604-2609, Feb 18 2019.
    [37] C. Chandra and J. Kim, "Silicon oxycarbide produced from silicone oil for high-performance anode material in sodium ion batteries," Chemical Engineering Journal, vol. 338, pp. 126-136, 2018.
    [38] Z. Liu et al., "Silicon oxides: a promising family of anode materials for lithium-ion batteries," Chem Soc Rev, vol. 48, no. 1, pp. 285-309, Jan 2 2019.
    [39] B. Jiang et al., "Dual Core-Shell Structured Si@SiOx@C Nanocomposite Synthesized via a One-Step Pyrolysis Method as a Highly Stable Anode Material for Lithium-Ion Batteries," ACS Appl Mater Interfaces, vol. 8, no. 46, pp. 31611-31616, Nov 23 2016.
    [40] D. Wang, M. Gao, H. Pan, J. Wang, and Y. Liu, "High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization," Journal of Power Sources, vol. 256, pp. 190-199, 2014.
    [41] L. Deng et al., "A Core-Shell Si@NiSi 2 /Ni/C Nanocomposite as an Anode Material for Lithium-ion Batteries," Electrochimica Acta, vol. 192, pp. 303-309, 2016.
    [42] S. Chae, M. Ko, S. Park, N. Kim, J. Ma, and J. Cho, "Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries," Energy & Environmental Science, vol. 9, no. 4, pp. 1251-1257, 2016.
    [43] S. Zhou, X. Liu, and D. Wang, "Si/TiSi2 Heteronanostructures as high-capacity anode material for li ion batteries," Nano Lett, vol. 10, no. 3, pp. 860-3, Mar 10 2010.
    [44] A. G. Tamirat et al., "Highly stable carbon coated Mg2Si intermetallic nanoparticles for lithium-ion battery anode," Journal of Power Sources, vol. 384, pp. 10-17, 2018.
    [45] J. Su, C. Zhang, X. Chen, S. Liu, T. Huang, and A. Yu, "Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium ion batteries anode," Journal of Power Sources, vol. 381, pp. 66-71, 2018.
    [46] J. Zhou et al., "Cu3Si@Si core-shell nanoparticles synthesized using a solid-state reaction and their performance as anode materials for lithium ion batteries," Nanoscale, vol. 7, no. 37, pp. 15075-9, Oct 7 2015.
    [47] J.-S. Lee, M.-S. Shin, and S.-M. Lee, "Electrochemical properties of polydopamine coated Ti-Si alloy anodes for Li-ion batteries," Electrochimica Acta, vol. 222, pp. 1200-1209, 2016.
    [48] M.-S. Shin, T.-W. Lee, J.-B. Park, S.-H. Lim, and S.-M. Lee, "Post-annealing effects on the electrochemical performance of a Si/TiSi2 heteronanostructured anode material prepared by mechanical alloying," Journal of Power Sources, vol. 344, pp. 152-159, 2017.
    [49] L. Wu, J. Yang, X. Zhou, J. Tang, Y. Ren, and Y. Nie, "Enhanced Electrochemical Performance of Heterogeneous Si/MoSi2 Anodes Prepared by a Magnesiothermic Reduction," ACS Appl Mater Interfaces, vol. 8, no. 26, pp. 16862-8, Jul 6 2016.
    [50] D. Shao, H. Zhong, and L. Zhang, "Water-Soluble Conductive Composite Binder Containing PEDOT:PSS as Conduction Promoting Agent for Si Anode of Lithium-Ion Batteries," ChemElectroChem, vol. 1, no. 10, pp. 1679-1687, 2014.
    [51] A. Magasinski et al., "Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid," ACS Appl Mater Interfaces, vol. 2, no. 11, pp. 3004-10, Nov 2010.
    [52] X. Shen et al., "Research progress on silicon/carbon composite anode materials for lithium-ion battery," Journal of Energy Chemistry, vol. 27, no. 4, pp. 1067-1090, 2018.
    [53] S. Fang et al., "Rational design of void-involved Si@TiO2 nanospheres as high-performance anode material for lithium-ion batteries," ACS Appl Mater Interfaces, vol. 6, no. 9, pp. 6497-503, May 14 2014.
    [54] C. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui, and Z. Bao, "Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries," Nat Chem, vol. 5, no. 12, pp. 1042-8, Dec 2013.
    [55] H. Sitinamaluwa, S. Zhang, W. Senadeera, G. Will, and C. Yan, "Carbon-based silicon nanohybrid anode materials for rechargeable lithium ion batteries," Materials Technology, vol. 31, no. 14, pp. 872-883, 2016.
    [56] B. Luo and L. Zhi, "Design and construction of three dimensional graphene-based composites for lithium ion battery applications," Energy & Environmental Science, vol. 8, no. 2, pp. 456-477, 2015.
    [57] M. Ko, S. Chae, S. Jeong, P. Oh, and J. Cho, "Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries," ACS Nano, vol. 8, no. 8, pp. 8591-9, Aug 26 2014.
    [58] J. Luo, X. Zhao, J. Wu, H. D. Jang, H. H. Kung, and J. Huang, "Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes," J Phys Chem Lett, vol. 3, no. 13, pp. 1824-9, Jul 5 2012.
    [59] N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang, and Y. Cui, "A yolk-shell design for stabilized and scalable li-ion battery alloy anodes," Nano Lett, vol. 12, no. 6, pp. 3315-21, Jun 13 2012.
    [60] D. Shao, D. Tang, Y. Mai, and L. Zhang, "Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries," Journal of Materials Chemistry A, vol. 1, no. 47, p. 15068, 2013.
    [61] T. H. Hwang, Y. M. Lee, B. S. Kong, J. S. Seo, and J. W. Choi, "Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes," Nano Lett, vol. 12, no. 2, pp. 802-7, Feb 8 2012.
    [62] L. Qian, J.-L. Lan, M. Xue, Y. Yu, and X. Yang, "Two-step ball-milling synthesis of a Si/SiOx/C composite electrode for lithium ion batteries with excellent long-term cycling stability," RSC Advances, vol. 7, no. 58, pp. 36697-36704, 2017.
    [63] E. Barsoukov, "Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy," Solid State Ionics, vol. 161, no. 1-2, pp. 19-29, 2003.
    [64] Q.-C. Zhuang, T. Wei, L.-L. Du, Y.-L. Cui, L. Fang, and S.-G. Sun, "An Electrochemical Impedance Spectroscopic Study of the Electronic and Ionic Transport Properties of Spinel LiMn2O4," 114, pp. 8614-8621, 2010.
    [65] E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy, Theory Experiment and Applications: John Wiley & Sons, Inc., Hoboken, New Jersey., 2005. [Online]. Available.
    [66] A. C. Ferrari, Interpretation of Raman Spectra of Disordered and Amorphous Carbon. 2000.
    [67] P. Colombo, G. Mera, R. Riedel, and G. D. Sorarù, "Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics," Journal of the American Ceramic Society, pp. no-no, 2010.
    [68] O. Sublemontier et al., "X-ray Photoelectron Spectroscopy of Isolated Nanoparticles," J Phys Chem Lett, vol. 5, no. 19, pp. 3399-403, Oct 2 2014.
    [69] M. Kim, H. Ju, and J. Kim, "Oxygen-doped porous silicon carbide spheres as electrode materials for supercapacitors," Phys Chem Chem Phys, vol. 18, no. 4, pp. 3331-8, Jan 28 2016.
    [70] H. Kim, M. Seo, M.-H. Park, and J. Cho, "A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries," Angewandte Chemie International Edition, vol. 49, no. 12, pp. 2146-2149, 2010/03/15 2010.
    [71] Q. Sun, B. Zhang, and Z.-W. Fu, "Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries," Applied Surface Science, vol. 254, no. 13, pp. 3774-3779, 2008/04/30/ 2008.
    [72] Q. Si et al., "Improvement of cyclic behavior of a ball-milled SiO and carbon nanofiber composite anode for lithium-ion batteries," Journal of Power Sources, vol. 196, no. 22, pp. 9774-9779, 2011/11/15/ 2011.
    [73] B. Guo et al., "Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries," Electrochemistry Communications, vol. 10, no. 12, pp. 1876-1878, 2008/12/01/ 2008.
    [74] S. Sim, P. Oh, S. Park, and J. Cho, "Critical thickness of SiO2 coating layer on core@Shell bulk@nanowire Si anode materials for Li-ion batteries," (in English), Advanced Materials, Article vol. 25, no. 32, pp. 4498-4503, 08 / 27 / 2013.
    [75] Y.-S. Hu et al., "Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries," vol. 47, ed, 2008, pp. 1645-1649.
    [76] L. Su, Z. Zhou, and M. Ren, "Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries," (in English), Chemical Communications, Article vol. 46, no. 15, pp. 2590-2592, 01 / 01 / 2010.
    [77] S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui, and K. Konno, "Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries," The Journal of Physical Chemistry C, vol. 115, no. 27, pp. 13487-13495, 2011/07/14 2011.
    [78] X. Feng, J. Yang, X. Yu, J. Wang, and Y. Nuli, Low-cost SiO-based anode using green binders for lithium ion batteries. 2013.
    [79] M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, and M. Shirakata, "Analysis of SiO Anodes for Lithium-Ion Batteries," Journal of The Electrochemical Society, vol. 152, no. 10, pp. A2089-A2091, October 1, 2005 2005.
    [80] A. M. Wilson, G. Zank, K. Eguchi, W. Xing, and J. R. Dahn, "Pyrolysed silicon-containing polymers as high capacity anodes for lithium-ion batteries," Journal of Power Sources, vol. 68, no. 2, pp. 195-200, 1997/10/01/ 1997.
    [81] J. Xu, Q. Zhang, and Y.-T. Cheng, "High Capacity Silicon Electrodes with Nafion as Binders for Lithium-Ion Batteries," Journal of The Electrochemical Society, vol. 163, no. 3, pp. A401-A405, 2016.
    [82] M. N. Obrovac and L. J. Krause, "Reversible Cycling of Crystalline Silicon Powder," Journal of The Electrochemical Society, vol. 154, no. 2, pp. A103-A108, 2007.

    無法下載圖示 校內:2024-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE