簡易檢索 / 詳目顯示

研究生: 林汯葦
Lin , Hong-Wei
論文名稱: 內禀鍵軌域法探討氧化釩催化之丙烷氧化脫氫反應之電子動態
Exploring Electron Dynamics in Vanadium Oxide-Catalyzed Propane Oxidative Dehydrogenation via the Intrinsic Bond Orbital Method
指導教授: 鄭沐政
Cheng , Mu-Jeng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 35
中文關鍵詞: 氧化脫氫反應內稟鍵軌域法釩氧化物團簇 氫原子轉移質子轉移
外文關鍵詞: Oxidative dehydrogenation, Intrinsic Bond Orbitals, V₄O₁₀ cluster, hydrogen atom transfer, proton transfer
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 歷來,反應箭頭圖(arrow-pushing diagrams)是一種描繪化學反應中電子移動的視覺工具,對理解反應機構具重要意義。隨著理論化學方法的進展,特別是內稟鍵軌域(Intrinsic Bond Orbital, IBO)分析的發展,使得這些圖示能夠從量子力學計算中嚴謹地建立。然而,現階段此類方法的應用多侷限於反應機構中的單一步驟或局部過程。
    丙烷氧化脫氫(ODH)反應轉化為丙烯是一項具高度催化重要性的轉化過程,對其反應機構進行軌域層次的理解將有助於深化機理認識。在本研究中,我們結合密度泛函理論(DFT)與IBO分析,針對V₄O₁₀簇模型構建一套涵蓋整個丙烷ODH催化循環的、以量子力學為基礎的箭頭推進機構圖。
    本研究結果顯示,電子結構變化集中於催化劑中的局部區域,主要涉及一個V=O雙鍵與其相鄰的一個橋氧原子。在反應過程中,該區域的V–O鍵在σ鍵與配位鍵(dative bond)性質之間交替轉換,以促進電子流動。此外,每個丙烷分子會經歷兩次氫移除步驟:首次為氫原子轉移(HAT),其次則為質子轉移(PT)。
    我們鑑別出兩類機理上不同的異丙基自由基捕捉路徑,分別為同步發生的碳離子耦合電子轉移(carbocation-coupled electron transfer)與碳自由基轉移(carbon radical transfer)。本研究凸顯了量子化學方法計算的反應箭頭圖在解構複雜催化機制、提供軌域層次見解方面的價值與潛力。

    Arrow-pushing diagrams are foundational tools for visualizing electron flow in chemical reactions. With recent advances, particularly intrinsic bond orbital (IBO) analysis, these diagrams can now be rigorously derived from quantum mechanical (QM) calculations. However, most applications remain limited to individual steps.
    Here, we employ density functional theory and IBO analysis to construct a complete QM-based arrow-pushing diagram for propane oxidative dehydrogenation (ODH) to propene on a V₄O₁₀ cluster, representing vanadium oxide catalysis.
    Our results show that electronic changes are highly localized, involving a single terminal V=O group and an adjacent bridging oxygen. Electron flow is mediated by V–O bonds that alternate between σ and dative character. The ODH cycle features two distinct hydrogen removal steps—hydrogen atom transfer (HAT) and proton transfer (PT)—and two mechanistically different isopropyl radical trapping events: one via carbocation-coupled electron transfer, the other via carbon radical transfer.
    This study demonstrates the power of QM-derived arrow-pushing diagrams in revealing orbital-level insights into complex catalytic mechanisms.

    第一章、緒論 10 第二章、計算方法 12 2-1 V4O10金屬氧化物催化劑團簇計算模型 12 2-2 量子化學計算方法 12 第三章、結果與討論 13 3-1 V4O10 催化之氧化脫氫循環中的步驟與能量分析 13 3-2 以 IBO 建立氧化脫氫催化反應各個中間體之路易士結構 16 3-3 以 IBO 結果進行各步驟中反應機構之探討 17 3-3.1 第一步-V4O10 催化之丙烷第一次脫氫反應(1st Hydrogen Abstraction of Propane) 17 3-3.2 第二步-V4O10 H 之異丙基自由基捕捉反應(V4O10H Radical Trapping) 19 3-3.3 第三步-V4O10 催化之丙烷第二次脫氫反應(2nd Hydrogen Abstraction of Propane) 21 3-3.4 第四步-V4O10 團簇再氧化反應(Reoxidation) 24 3-3.5 第五步-V4O11 團簇催化之丙烷第一次脫氫反應(1st Hydrogen Abstraction of Propane) 25 3-3.6 第六步-V4O11 H 之異丙基自由基捕捉反應(V4O11H Radical Trapping) 27 3-3.7 第七步-V4O11 H 催化之丙烷第二次脫氫反應(2nd Hydrogen Abstraction of Propane) 29 第四章、結論 31 參考文獻 32

    1. Chen, S., et al., Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chem. Soc. Rev. 50, 5, 3315-3354, 2021.
    2. Blasco, T., et al., Oxidative dyhydrogenation of short chain alkanes on supported vanadium oxide catalysts. Appl. Catal. A: Gen 157, 1-2, 117-142, 1997.
    3. Surnev, S., et al., Vanadium oxide surface studies. PROG SURF SCI 73, 4-8, 117-165, 2003.
    4. Venuto, P. B. Organic catalysis over zeolites: a perspective on reaction paths within micropores. MICROPOR MESOPOR MAT 2, 5, 297-411, 1994.
    5. Batiot, C., et al., The role of reactant and product bond energies in determining limitations to selective catalytic oxidations. Appl. Catal. A: Gen 137 , 1, 179-191, 1996.
    6. Kogan, S., et al., Dehydrogenation of propane on modified Pt/θ-alumina performance in hydrogen and steam environment. Appl. Catal. A: Gen 208 , 1-2, 185-191, 2001.
    7. Zha, S., et al., Identification of Pt-based catalysts for propane dehydrogenation via a probability analysis. CHEM SCI 9, 16, 3925-3931, 2018.
    8. Zhang, W., et al., Size dependence of Pt catalysts for propane dehydrogenation: from atomically dispersed to nanoparticles. ACS Catal. 10, 21, 12932-12942, 2020.
    9. Burk, M. J., et al., Selective catalytic dehydrogenation of alkanes to alkenes. J. Am. Chem. Soc. 109, 26, 8025-8032, 1987.
    10. Zboray, M., et al., Role of C− H bond strength in the rate and selectivity of oxidative dehydrogenation of alkanes. J. Phys. Chem. C 113, 28, 12380-12386, 2009.
    11. Grant, J. T., et al., Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts. Science 354, 6319, 1570-1573, 2016.
    12. Tyo, E. C., et al., Oxidative dehydrogenation of cyclohexane on cobalt oxide (Co3O4) nanoparticles: the effect of particle size on activity and selectivity. ACS Catal. 2, 11, 2409-2423, 2012.
    13. Khodakov, A., et al., Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. J. Catal. 181, 2, 205-216, 1999.
    14. Weckhuysen, B. M., et al., Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal. Today 78, 1-4, 25-46, 2003.
    15. Carrero, C. A., et al., Critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts. ACS Catal. 4, 10, 3357-3380, 2014.
    16. Chen, K., et al., Kinetics and mechanism of oxidative dehydrogenation of propane on vanadium, molybdenum, and tungsten oxides. J. Phys. Chem. B 104, 6, 1292-1299, 2000.
    17. Gambo, Y., et al., Catalyst design and tuning for oxidative dehydrogenation of propane–A review. Appl. Catal. A: Gen. 609, 117914, 2021.
    18. Le Bars, J., et al., Role of surface acidity on vanadia/silica catalysts used in the oxidative dehydrogenation of ethane. Appl. Catal. A: Gen. 88, 2, 179-195, 1992.
    19. Rozanska, X., et al., Oxidative dehydrogenation of propane by monomeric vanadium oxide sites on silica support. J. Phys. Chem. C 111, 16, 6041-6050, 2007.
    20. Rozanska, X., et al., Size-dependent catalytic activity of supported vanadium oxide species: oxidative dehydrogenation of propane. J. Am. Chem. Soc. 136, 21, 7751-7761, 2014.
    21. Cheng, M.-J., et al., Single-site vanadyl activation, functionalization, and reoxidation reaction mechanism for propane oxidative dehydrogenation on the cubic V4O10 cluster. J. Phys. Chem. C 111, 13, 5115-5127, 2007.
    22. Mayer, J. M. Understanding hydrogen atom transfer: from bond strengths to Marcus theory. Acc. Chem. Res. 44, 1, 36-46, 2011.
    23. Wang, L., et al., Hydrogen-atom transfer reactions. Hydrogen Transfer Reactions: Reductions and Beyond 205-259, 2016.
    24. Capaldo, L., et al., Hydrogen atom transfer (HAT): a versatile strategy for substrate activation in photocatalyzed organic synthesis. Eur. J. Org. Chem. 15, 2056-2071, 2017.
    25. Hammes-Schiffer, S. Proton-coupled electron transfer: Moving together and charging forward. J. Am. Chem. Soc. 137, 28, 8860-8871, 2015.
    26. Huynh, M. H. V.; Meyer, T. J. Proton-coupled electron transfer. Chem. Rev. 107, 11, 5004-5064, 2007.
    27. Hammes-Schiffer, S. Introduction: Proton-coupled electron transfer. Chem. Rev. 110, 12, 6937-6938, 2010.
    28. Soudackov, A. V., et al., Probing nonadiabaticity in the proton-coupled electron transfer reaction catalyzed by soybean lipoxygenase. J. Phys. Chem. Lett. 5, 18, 3274-3278, 2014.
    29. Klein, J. E., et al., cPCET versus HAT: a direct theoretical method for distinguishing X–H bond‐activation mechanisms. Angew. Chem. Int. Ed. 57, 37, 11913-11917, 2018.
    30. Knizia, G. Intrinsic atomic orbitals: An unbiased bridge between quantum theory and chemical concepts. J. Chem. Theory Comput. 9, 11, 4834-4843, 2013.
    31. Knizia, G., et al., Electron flow in reaction mechanisms—revealed from first principles. Angew. Chem. Int. Ed. 54, 18, 5518-5522, 2015.
    32. Weinhold, F., et al., Natural bond orbitals and extensions of localized bonding concepts. Chem Educ. Res. Pract. 2, 2, 91-104, 2001.
    33. Weinhold, F., et al., Natural bond orbital analysis: A critical overview of relationships to alternative bonding perspectives. J. Comput. Chem. 33, 30, 2363-2379, 2012.
    34. Glendening, E. D., et al., Natural bond orbital methods. Wiley interdisciplinary reviews: computational molecular science 2, 1, 1-42, 2012.
    35. Robinson, R., et al., LI.—An explanation of the property of induced polarity of atoms and an interpretation of the theory of partial valencies on an electronic basis. J. Chem. Soc., Trans. 121, 427-440, 1922.
    36. Ingold, C. K. Principles of an Electronic Theory of Organic Reactions. Chem. Rev. 15, 2, 225-274, 1934.
    37. Went, G. T., et al., Laser Raman spectroscopy of supported vanadium oxide catalysts. J. Phys. Chem. 94, 10, 4240-4246, 1990.
    38. Frisch, M. J., et al., Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
    39. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 6, 3098, 1988.
    40. Lee, C., et al., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 2, 785, 1988.
    41. Deng, L., et al., The determination of intrinsic reaction coordinates by density functional theory. Int. J. Quantum Chem. 52, 4, 731-765, 1994.
    42. Meyer, R., et al., Geometry optimization using Gaussian process regression in internal coordinate systems. J. Chem. Phys. 152, 8, 2020.
    43. Neese, F. An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. J. Comput. Chem. 24, 14, 1740-1747, 2003.
    44. Garcia‐Ratés, M., et al., Effect of the Solute Cavity on the Solvation Energy and its Derivatives within the Framework of the Gaussian Charge Scheme. J. Comput. Chem. 41, 9, 922-939, 2020.
    45. Neese, F. The SHARK integral generation and digestion system. J. Comput. Chem. 44, 3, 381-396, 2023.

    下載圖示
    2025-12-31公開
    QR CODE