簡易檢索 / 詳目顯示

研究生: 李鵬霄
Lee, Peng-Hsiao
論文名稱: 表面電漿子應用於光譜濾波器之研究
Researches of surface plasmonic filters
指導教授: 藍永強
Lan, Yung-Chiang
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 109
中文關鍵詞: 表面電漿子時域有限差分法穿隧效應
外文關鍵詞: surface plasmons, finite-difference time domain method, tunneling effect
相關次數: 點閱:146下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面電漿子因具備「濾波機制創新」、「克服傳統光學繞射極限」、「具高集成密度元件潛力」、「可結合現行光源模組」等項特性,目前已被視為實現奈米等級集成密度元件之全新發展途徑。
    本研究藉表面電漿子「克服傳統光學繞射極限」之特性,輔以「共振腔共振」、「穿隧效應」及「破壞性干涉」等物理機制提出穿透式及掃描式等兩型奈米級表面電漿子濾波元件,其中採用「時域有限差分法」為數值模擬主體,並搭配快速傅利葉轉換分析元件穿透頻譜,應用邊界條件包含Perfectly matched layer(PML)、Impedance-matching layer(IML)及連續邊界等,電漿材料則以Drude模型予以描述。
    穿透式元件基本設計構想係藉平面波源激發輸入端矩形半開放式共振腔與金屬銀介面處之表面電漿子(單一模態),考量共振腔長度決定其共振頻段,故僅特定頻段之表面電漿子模態可於共振腔內產生駐波共振現象,同時前揭模態亦將藉體電漿共振穿隧機制將能量傳遞至輸出端矩形半開放式共振腔,並於共振腔中產生表面電漿子駐波共振現象,進而於輸出端共振腔輸出特定頻段之表面電漿子模態,俾達濾波之目的。
    反觀掃描式元件則以MIM波導結構兩側金屬(銀)內縱置橫向平行排列矩形封閉式共振腔對為佈局,藉穿隧效應引入並儲存MIM波導內具共振頻率之表面電漿子傳輸能量,其中頻率為共振頻段之表面電漿子將於共振腔產生駐波共振現象,基於共振腔內共振模態於返回MIM波導後衍生之破壞性干涉致使表面電漿子無法賡續沿波導傳輸,而頻率非屬共振頻段之表面電漿子,封閉式共振腔僅被視為近場障礙,無法有效引入並儲存表面電漿子能量,故於表面電漿子之輸出頻譜顯現特定頻段具極低之透射比,發揮截止頻段濾波器之功能。

    Since surface plasmons are equipped with various features as “innovative mechanism of filter,” “prevailing over limit of traditional optics diffraction,” “potentiality for high-density and integrated component” and “feasibility integrating current light-source mould,” it has already been considered as the entirely novel approach of development for the realization towards nano-scalar integrated components.

    This research make use of the feature in surface plasmons as “prevailing over limit of traditional optics diffraction” and complement it with physical mechanism of “cavity resonance,” “tunneling effect,” and “destructive interference” as to put forth two types of transmission and scanning surface plasmons filter. Among which, finite-difference time domain method (FDTD) is employed as the algorithm for numerical simulation, and collocated with Fast Fourier Transform (FFT), making use of boundary conditions as which perfectly matched layer (PML), impedance-matching layer (IML), and continuous boundary, while plasmons material is described in Drude model.

    The concept of basic design for transmission component basic design is to exploit exciting surface plasmons (single mode) between the interface of rectangle half-open resonance cavities and metal silver at the input end of plane wave source. Since the length of resonance cavity is considered to determine its resonance frequency band, it is only surface plasmons from specific frequency band can have produced resonance phenomenon of standing wave within resonance cavities. Meanwhile, resonance mode will also transmit energy from tunneling effect mechanism of body plasmons resonance to rectangle half-open resonance cavities at output end. In such a way, resonance phenomenon of standing wave from surface plasmons will be generated at resonance cavities so that surface plasmons with specific frequency band with resonance cavities at output end is found, achieving the purpose of wave filtering.

    As we probe into scanning component, horizontal and parallel arrangement of rectangle closed resonance cavities are deployed with MIM waveguide structure on two metal sides (silver) inside vertically. With such design, it is hoped to resort to tunneling effect, and store transmission energy from surface plasmons within resonance frequency of MIM waveguide structure. For surface plasmons with frequency band of resonance, it will produce resonance phenomenon of standing wave from resonance cavities as destructive interference derived from resonance surface plasmons mode in resonance cavities after returning MIM waveguide is incapacitated to continue waveguide for transmission. However, frequency of surface plasmons classified as not the resonance, closed resonance cavities would be merely reckoned as near field obstacles for it is unable to effectively introduce or store surface plasmons energy. As a result, output spectrum of surface plasmons will demonstrate extremely lower transmittance of specific frequency band, helping to function interrupting and stopping as band wave filter.

    中文摘要……………………………………………………………………Ⅰ 英文摘要……………………………………………………………………Ⅲ 誌謝…………………………………………………………………………Ⅴ 總目錄………………………………………………………………………Ⅵ 圖目錄………………………………………………………………………Ⅸ 符號說明…………………………………………………………………ⅩⅡ 第一章 光譜濾波器……………………………………………..……….….1 1-1 簡介………………………………………………………………….….1 1-1-1 Fabry-Perot濾波器…………………………………………………..2 1-1-2 Mach-Zhnder濾波器………………………………………………...3 1-1-3 Bragg 光纖光柵……………………………………………………..4 1-1-4 介電薄膜濾波器……………………………………………………..5 1-1-5 繞射光柵……………………………………………………………..6 1-2 研究動機………………………………………………………………..9 1-3 論文架構………………………………………………………………13 第二章 表面電漿子……………………………………………………..…14 2-1 發展簡史………………………………………………………………14 2-2 金屬之光學特性………………………………………………………16 2-3 金屬與介電質界面表面電漿子模態…………………………………22 2-4 金屬薄膜表面電漿子模態……………………………………………25 2-5 金屬-介電質-金屬(MIM)結構表面電漿子模態…………………..28 第三章 數值模擬方法………………………………………………..……30 3-1 演算法選擇概述………………………………………………………30 3-2 時域有限差分法………………………………………………………32 3-3 數值模擬穩定性………………………………………………………39 3-4 數值模擬邊界條件……………………………………………………41 3-4-1 完美匹配層吸收邊界………………………………………………41 3-4-2 阻抗匹配層吸收邊界………………………………………………45 3-4-3 週期邊界條件………………………………………………………49 3-5 電漿材料模擬…………………………………………………………51 3-6 快速傅利葉轉換………………………………………………………54 第四章 穿透式表面電漿子光譜濾波器………………………..…………58 4-1 元件設計、模擬參數及物理機制……………………………………58 4-2 共振腔長度對元件物理特性之影響………………………………....61 4-3 共振腔週期對元件物理特性之影響………………………………....67 4-4 共振腔填充材料介電係數對元件物理特性之影響………………....70 4-5 元件可能之賡續應用與發展………………………………................78 第五章 掃描式表面電漿子光譜濾波器…………………………..………80 5-1 元件設計、模擬參數及物理機制……………………………………80 5-2 共振腔長度對元件物理特性之影響………………………………....83 5-3 共振腔與MIM波導間距對元件物理特性之影響………………......89 5-4 共振腔數目與共振腔間距對元件物理特性之影響……………........91 5-5 元件可能之賡續應用與發展………………………………................93 第六章 結論………………………………..................................................96 參考文獻………………………………........................................................99 著作列表………………………………......................................................109

    參考文獻(第一章)
    [1.1] S. V. Kartalopoulos, DWDM, John Wiley & Sons, New Jersey, 98-119 (2003).
    [1.2] H. J. R. Dutton, Understanding optical communications, Prentice Hall, New Jersey, 295 (1998).
    [1.3] M. A. Scobey and D. E. Spock, Passive DWDM Components Using Microplamsa Optical Interference Filters, OFC 96 Technical Digest, 242-243 (1996).
    [1.4] Y. P. Li and C. H. Henry, Silica-Based Optical Integrated Circuit, Proc. Optoelectron, 143, 263-279 (1996).
    [1.5] P. D. Trinh, S. Yegnanarayanan and B. Jalali, 5*9 Integrated Optical Star Coupler in Silicon-On-Isoulator Technology, Photonics Technology Letters, 8, 794-796 (1996).
    [1.6] M. Zirngible, C. Dragone and C. H. Joyner, Demonstration of A 15*15 Arrayed Waveguide Multiplexer on InP, Photonics Technology Letters, 4, 1250-1253 (1992).
    [1.7] F. L. Pedrotti and L. S. Pedrotti, Introduction to optics, Prentice Hall, New Jersey, 9 (1993).
    [1.8] E. C. Pennings, G. H. Manhoudt and M. K. Smit, Low-loss Bends in Planar Optical Ridge Waveguides, Electronics Letters, 24, no.16, 998-999 (1988).
    [1.9] S. Sekine, K. Shuto and S. Suzuki, Low-loss, High-Δ, Single-mode Channel Waveguides for High-Density Integrated Optical Devices, Electronics Letters, 25, no.23, 1573-1574 (1989).
    [1.10] N. Hiroshi, Optical integrated circuits, McGraw-Hill, New York, 43 (1989).
    [1.11] B. Wang and G. P. Wang, Plasmon Bragg reflectors and nanocavities on flat metallic surfaces, Appl. Phys. Lett. 87, 013107 (2005).
    [1.12] A. Hosseini and Y. Massoud, A low-loss metal-insulator-metal plasmonic Bragg reflector, Opt. Express 14, 11318-11323 (2006).
    [1.13] A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen and K. Leosson, Compact Bragg gratings for long-range surface plasmon polaritons, J. Lightwave. Technol. 24, 912-918 (2006).
    [1.14] Z. Han, E. Forsberg and S. He, Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides, IEEE Photon. Technol. 19, 91-93 (2007).
    [1.15] J. Park, H. Kim and B. Lee, High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating, Opt. Express. 16, 413-425 (2008).
    [1.16] A. Hosseini, H. Nejati and Y. Massoud, Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors, Opt. Express. 16, 1475-1480 (2008).
    [1.17] J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou and S. Wen, A wide bandgap plasmonic Bragg reflector, Opt. Express. 16, 4888-4893 (2008).
    [1.18] X. S. Lin and X. G. Huang, Tooth-shaped plasmonic waveguide filters with nanometeric sizes, Opt. Lett. 33, 2874-2876 (2008).
    [1.19] C. Min and G. Veronis, Absorption switches in metal-dielectric-metal plasmonic waveguides, Opt. Express 16, 10757-10766 (2009).
    [1.20] J. Tao, X. G. Huang, X. S. Lin, Q. Zhang and X. Jin, A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure, Opt. Express 17, 13989-13994 (2009).
    [1.21] A. Hosseini and Y. Massoud, Nanoscale surface plasmon based resonator using rectangular geometry, Appl. Phys. Lett. 90, 181102 (2007).
    [1.22] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin Heidelberg, 5 (1988).
    [1.23] K. Y. Kim, Y. K. Cho and H. S. Tae, Light transmission along dispersive plasmonic gap and its subwavelength guidance characteristics, Opt. Express 14, 320-330 (2006).
    [1.24] B. Wang and G. P. Wang, Surface plasmon polariton propagation in nanoscale metal gap waveguides, Opt. Lett. 29, 1992-1994 (2004).
    [1.25] X. Fan and G. P. Wang, Nanoscale metal waveguide arrays as plasmon lenses, Opt. Lett. 31, 1322-1324 (2006).
    [1.26] Z. Kang and G. P. Wang, Coupled metal gap waveguides as plasmonic wavelngth sorters, Opt. Express 16, 7680-7685 (2008).
    [1.27] J. L. Perchec, P. Quemerais, A. Barbara and T. L. Rios, Why metallic surface with grooves a few nanometers deep and wide may strongly absorb visible light, Phys. Rev. Lett. 100, 066408 (2008).
    [1.28] S. Xiao and N. A. Mortensen, Resonant-tunnelling-assisted crossing for subwavelength plasmonic slot waveguides, Opt. Express 19, 14997-15005 (2008).
    [1.29] *Y. C. Lan, Y. C. Chang, P. H. Lee, Manipulation of Tunneling Frequencies Using Magnetic Fields for Resonant Tunneling Effects of Surface Plasmons,Appl. Phys. Lett, 90, 17, pp171114 (2007).

    參考文獻(第二章)
    [2.1] M. L. Brongersma and P. G. Kik, Surface plasmon nanophotonics, Springer, 1 (2007).
    [2.2] R. W. Wood, On a remarkable case of uneven distribution of light in a different grating spectrum, Philos. Mag., 4, 396 (1902).
    [2.3] J. C. Maxwell Garnett, Colours in metal glasses and in metallic films, Philos. Trans. R. Soc. London, 203, 385 (1904).
    [2.4] D. Pines, Collective energy losses in solid, Rev. Mod. Phys, 28, 184-198 (1956).
    [2.5] R. Fano, Atomic theory of electromagnetic interactions in dense materials, Phys. Rev., 106, 1202 (1956).
    [2.6] R. H. Ritchie, Plasma losses by fast electrons in thin films, Phys. Rev., 106, 874 (1957).
    [2.7] R. H. Ritchie, E. T. Arakawa, J. J. Cowan and R. N. Hamm, Surface-plasmon resonce effect in grating diffraction, Phys. Rev. Lett., 21, 1530-1532 (1968).
    [2.8] A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Z. Phys., 216, 398 (1968).
    [2.9] A. Otto, E. Kretschmann and H. Raether, Radiative decay of non-radiative surface plasmon excited by light, Z. Nature, 23A, 2135 (1968).
    [2.10] N. W. Ashcroft and N. D. Mermin, Solid state physics, Thomson Learning, U. S. A., 4 (1976).
    [2.11] A. V. Zayats, I. I. Smolyaninov and A. A. Maradudin, Nano-optics of surface plasmon polaritons, Phys. Rep. 408, 131-314 (2005).
    [2.12] E. N. Economou, Surface plasmons in thin films, Phys. Rev. 182, 539-554 (1969).
    [2.13] S. A. Maier, Plasmonics : fundamentals and applications, Springer, New York, 30 (2007).
    [2.14] 邱國斌,蔡定平,金屬表面電漿簡介,物理雙月刊,28卷,472-485 (2006)。
    [2.15] G. Mattiussi and P. Berini, Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides, Opt. Express 13, 4674-4682 (2005).

    參考文獻(第三章)
    [3.1] 張勝雄,以電漿子波導實現積體光學元件之研究與評價,國立中央大學電機工程研究所博士論文,2008。
    [3.2] K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media, IEEE Trans. Antennas Propagat., AP-14(3), 302-307, 1966.
    [3.3] A. Taflove, Computational electrodynamics : the finite-difference time-domain method, Artech House, Boston, 3, 2005.
    [3.4] E. Ozbay, Plasmonics: Merging photonics and electronics at nanoscale dimensions, Science, 311, 189-193, 2006.
    [3.5] J. Wuenschell and H. K. Kim, Surface plasmon dynamics in an isolate meticallic nanoslit, Optics express, 14, 10000-10008, 2006.
    [3.6] X. Lin and X. Huang, Nunerical modeling of a teeth-shaped nanoplasmonic waveguide filter, Opt. Soc. Am. B, 26, 1263-1268, 2009.
    [3.7] M. Hochberg, T. B. Jones, C. Walker and A. Scherer, Integrated plasmon and dielectric waveguides, Optics express, 12, 5481-5486, 2004.
    [3.8] P. S. Davids, B. A. Block and K. C. Cadien, Surface plasmon polarization filtering in a single mode dielectric waveguide, Optics express, 13, 7063-7069, 2005.
    [3.9] A. Mohammadi and M. Agio, Dispersive contour-path finite-difference time-domain algorithm for modeling surface plasmon polaritons at flat interfaces, Optics express, 14, 11330-11338, 2006.
    [3.10] J. C. Maxwell, A treatise on electricity and magnetism, Clarendon press, Oxford, 2, 247-262, 1892.
    [3.11] U. S. Inan and A. S. Inan, Electromagnetic waves, Prentice hall, New Jersey, 5, 2000.
    [3.12] 葛德彪及閻玉波,電磁波時域有限差分方法,西安電子科技大學出版社,西安,14,2005。
    [3.13] A. Taflove, K. R. Umshankar, B. Beker, F. Haroush and K. S. Yee, IEEE IEEE Trans. Antennas Propagat., 36, 1988.
    [3.14] B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comput., 31, 629-651, 1977.
    [3.15] G. Mur, Absorbing boundary conditions for finite-difference time-domain electromagnetic field equations, IEEE Trans. Electromagn. Compat., EMC-23(4), 377-382, 1981.
    [3.16] J. P. Berenger, A perfect match layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185-200, 1994.
    [3.17] Chen B, Fang DG, Zhou BH, Modified Berenger PML absorbing boundary condition for FD-TD meshes, IEEE Microw Guided Wave Lett, 5, 399–401, 1995.
    [3.18] Sacks ZS, Kingsland DM, Lee R, Lee JF, A perfectly matched anisotropic absorber for use as an absorbing boundary condition, IEEE Trans. Antennas Propag., 43, 1460–1463, 1995.
    [3.19] Sullivan DM, A simplified PML for use with the FDTD method, IEEE Microw. Guided Wave Lett., 6, 97–99, 1996.
    [3.20] Fang J and Wu Z, Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media, IEEE Trans. Microwave Theor. Tech., 44, 2216–2222, 1996.
    [3.21] Roden JA and Gedney SD, Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media, Microw Opt. Technol Lett., 27, 334–339, 2000.
    [3.22] C. C. Chao, S. H. Tu, C. M. Wang, H. I. Huang, C. C. Chen and J. Y. Chang, Impedance-Matching Surface Plasmon Absorber for FDTD Simulations, Plasmonics, DOI 10.1007/s11468-009-9114-2, 2009.
    [3.23] Sánchez-Gil JA and Maradudin AA, Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects, Phys. Rev. B, 60, 8359, 1999.
    [3.24] W. J. Tsay and D. M. Pozar, Application of the FDTD technique to periodic problem in scattering and radiation, IEEE Microw. Guided Wave Lett., 3, 250–252, 1993.
    [3.25] P. H. Lee and Y. C. Lan, Tunneling intensity enhancement of resonant tunneling effects caused by surface plasmon excitations, Plasmonics, DOI 10.1007/s11468-010-9127-x, 2010.
    [3.26] 陳建名,快速傅立葉轉換架構之設計研究,國立東華大學電機工程研究所碩士論文,2004。
    [3.27] 陳政嘉,利用快速傅立葉轉換處理光傳播,國立中正大學物理研究所碩士論文,2005。
    [3.28] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical recipes: The art of scientific computing, Cambridge University Press, New York, 381, 1996.

    參考文獻(第四章)
    [4.1] G. I. Stegeman, R. F. Wallis and A. A. Maradudin, Excitation of surface polaritons by end-fire coupling, Opt. Lett., 8, 386-388, 1983.
    [4.2] M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist and J. R. Sambles, Stationary surface plasmons on a zero-order metal grating, Phys Rev Lett, 80, 5667–5670, 1998.
    [4.3] W. C. Tan, T. W. Preist, J. R. Sambles and N. P. Wanstall, Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings, Phys Rev B, 59, 12661–12666, 1999.
    [4.4] Y. C. Lan, Y. C. Chang, P. H. Lee, Manipulation of tunneling frequencies using magnetic fields for resonant tunneling effects of surface plasmons, Appl Phys Lett, 90, 171114, 2007.
    [4.5] Y. C. Lan, Magnetic field-induced frequency shifts for resonant tunneling effects caused by surface plasmons excitation, IEEE J Sel Top Quantum Electron, 14, 1559–1564, 2008.
    [4.6] J. P. Kottmann, J. F. M. Olivier, R. S. David and Sheldon Schultz, Plasmon resonances of silver nanowires with a nonregular cross section, physical review B, 64, 235402, 2001.
    [4.7] K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. B, 107, 668-677, 2003.
    [4.8] S. M. Sze, Semiconductor devices physics and technology, 2nd edn. Wiley, New York, 2001.

    參考文獻(第五章)
    [5.1] A. Hosseini and Y. Massouda, Nanoscale surface plasmon based resonator using rectangular geometry, Appl Phys Lett, 90, 181102, 2007.
    [5.2] B. E. Little, Ultra compact Si-SiO2 microring resonator optical channel dropping filters, Opt. Lett, 23, 1570, 1998.
    [5.3] Y. Yariv, Universal relations for coupling of optical power between microresonators and dielectric waveguides, Electron. Lett. 36, 321, 2000.
    [5.4] X. S. Lin and X. G. Huang, Tooth-shaped plasmonic waveguide filters with nanometeric sizes, Opt. Lett. 33, 2874-2876, 2008.
    [5.5] J. Tao, X. G. Huang, X. S. Lin, Q. Zhang and X. Jin, A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure, Opt. Express 17, 13989-13994, 2009.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE