| 研究生: |
鄭育奇 Cheng, Yu-Chi |
|---|---|
| 論文名稱: |
有機溶劑中以脂肪進行醯基轉化之研究;(I) 副反應對轉酯化分割之影響,(II) 以木瓜脂肪進行(R, S)-苯氧基丙酸之酯化分割 Acyl transfer catalyzed by lipases in organic solvents; I. Theoretical study of side-reaction effects on lipase-catalyzed transesterification, II. Esterification resolution of (R, S)- phenoxypropionic acid by Carica papaya lipase. |
| 指導教授: |
蔡少偉
Tsai, Shau-Wei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 副反應 、醯基轉化 、苯氧基丙酸 、木瓜脂肪 |
| 外文關鍵詞: | acyl transfer, phenoxypropionic acid, Carica papaya lipase, side reaction |
| 相關次數: | 點閱:42 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
(I) 本文提出一個分析解,探討以酵素為觸媒進行不可逆醯基轉化動態動力分割系統中副反應對目標對掌性異構物產量及光學純度之影響。此外,以脂肪酵素進行(R, S)-naproxen 2,2,2-trifluoroethyl thioester與4-morpholine ethanol之轉硫酯化動態動力分割為範例,進一步比較理論預測與實驗結果間差異。在控制異辛烷溶液中之初始水含量為0.113下,發現添加消旋觸媒三辛基胺對酵素水解副反應、酵素對醇與水之選擇性有重大影響。理論分析顯示若酵素對水解及酯化副反應有較好之反應性與立體選擇性時,副反應將有助於增加目標對掌性異構物產量及光學純度,此結果特別適合於消旋速率較快之反應系統。
(II) 本文以木瓜脂肪進行氯基苯氧基丙酸之酯化分割,比文獻中表現最好的C. rugosa lipase,擁有更佳的鏡像選擇性及反應性,且最佳反應溫度超過60度以上,再加上其為天然固定化的性質、酵素容易回收再使用、在價錢上較商業化C. rugosa lipase便宜,這顯示木瓜脂肪是具有競爭力的生化觸媒。總而言之,在所選擇的反應條件下,利用木瓜脂肪進行氯基苯氧基丙酸的酵素製程已成功地被開發。
動力學數據顯示酸與醇皆顯示基質抑制作用,然而在高濃度醇下,酵素的鏡像選擇性最高可提升至20倍以上,顯示三甲基矽甲醇的濃度改變可視為一有效改善酵素鏡像選擇性的策略。而熱力學分析顯示木瓜脂肪催化不同溶劑下不同氯取代基位置的氯基苯氧基丙酸,皆遵循焓熵補償效應。與lipase MY比較可發現,木瓜脂肪與鄰鄰–氯基苯氧基丙酸上的氯有一作用力存在,導致兩種酵素在面對鄰位氯取代的酸基質時有截然不同的鏡像選擇性。
(I) An analytical solution for the dynamic kinetic resolution of enzyme-catalyzed irreversible acyl transfer was employed to study the side-reaction effects on the yield and optical purity of the desired enantiomeric product. A lipase-catalyzed enantioselective thiotransesterification between (R, S)-naproxen 2,2,2-trifluoroethyl thioester and 4-morpholine ethanol with in situ racemization of (R)-thioester using trioctylamine as the racemization catalyst in isooctane was designed as a model system to compare the theoretical predictions. Under an initial water activity of 0.113, adding trioctylamine was found to have profound effects on the hydrolysis side-reactions, thus enhancing the chemoselectivity of the lipase to the alcohol in comparison with water. Theoretical analysis also indicated that the time-course yield and the enantiomeric excess for the desired enantiomer could be improved if the employed lipase had higher activity and enantioselectivity for the hydrolysis and esterification side-reactions, especially when the base had a similar racemization rate compared with the rate of the fast-reaction substrate.
(II) A partially purified Carica papaya (pCPL) was explored as an effective biocatalyst for the esterification resolution of various (RS)-2-chlorophenoxypropionic acids (CPP) with trimethylsilylmethanol in anhydrous isooctane. In comparison with the performance of crude Candida rugosa lipase, pCPL has high E value (> 100) for 2-chloro and 4-chloro but not 3-chloro substituted CPP. More than an order-of-magnitude lower reactivity was obtained for the hindered substrate of (RS)-2-(2-chlorophenoxy)propionic acid. The thermodynamic analysis indicates that the enantiomeric discrimination for all reaction systems is mainly driven by the difference of activation enthalpy. A good enthalpy-entropy compensation effect between -ΔΔH and -ΔΔS is demonstrated and elucidated for the region-effect of substrates containing 2-, 3- or 4-chloro substituent. The kinetic analysis indicates that pCPL is inhibited strongly by the acid substrate, but to a less extent by the alcohol substrate. However with the penalty of decreasing pCPL activity, the E value in isooctane can be greatly enhanced when trimethylsilylmethanol concentration higher than 40 mM is employed.
Andraos, J., Quantification and optimization of dynamic kinetic resolution, J. Phys. Chem. A, 107, 2374-2387, 2003.
Arnum, P.V., Single enantiomer drugs keep pace, Chemical market reporter, 255, 3, 18, 1999.
Azerad, R., Buisson, D., Dynamic resolution and stereoinversion of secondary alcohols by chemo-enzymatic processes, Curr. Opin. Biotechnol., 11, 565-571, 2000.
Badjic, J.G., Kadnikova, E.N., Kostic, N.M., Enantioselective aminolysis of an α-chloroester catalyzed by Candida cylindracea lipase encapsulated in sol-gel silica glass, Org. Lett., 3, 2025-2028, 2001.
Baumann, M., Hauer, B.H., Bornscheuer, U.T., Rapid screening of hydrolases for the enantioselective conversion of ‘difficult-to-resolve’ substrates, Tetrahedron: Asymmetry, 11, 4781-4790, 2000.
Beak, P., Anderson, D.R., Curtis, M.D., Laumer, J.M., Pippel, D.J., Weisenburger, G.A., Dynamic thermodynamic resolution: control of enantioselectivity through diastereomeric equilibration, Acc. Chem. Res., 33, 715-727, 2000.
Bencsura, A., Enyedy, I.Y., Kovach, I.M., Probing the active site of acetylcholine esterase by molecular dynamics of its phosphonate ester adduct, J. Am. Chem. Soc., 118, 8531-8541, 1996.
Berglund P., Controlling lipase enantioselectivity for organic synthesis, Biomolecular Eng., 18, 13-22, 2001.
Bite, M.G., Bryant, R.J., The global fungicide directory, 2nd. ed., Agranova, 2000.
Blackmond, D.G., Kinetic aspects of nonlinear effects in asymmetric catalysis, Acc. Chem. Res., 33, 402-411, 2000.
Blackmond, D.G., Kinetic implications of nonlinear effects in asymmetric synthesis, J. Am. Chem. Soc., 120, 13349-13353, 1998.
Blackmond, D.G., Kinetic resolution using enantioimpure catalysts: mechanistic considerations of complex rate laws, J. Am. Chem. Soc., 123, 545-553, 2001.
Blackmond, D.G., Rosner, T., Neugebauer, T., Reetz, M.T., Kinetic influences on enantioselectivity for non-diastereopure catalyst mixtures, Angew. Chem., Int. Ed. 38, 2196-2199, 1999.
Broos, J., Engbersen J.F.J., Sakodinskaya, I.K., Verboom W., Reinhoudt, D.N., Activity and enantioselectivity of serine proteases in transesterification reactions in organic media, J. Chem. Soc. Perkin Trans., 1, 2899-2905, 1995.
Cardenas, F., Castro, M.S., Sanchez-Montero, J.M., Sinisterra, J.V., Valmaseda, M., Elson, S.W., Alvarez, E., Novel microbial lipases: catalytic activity in reactions in organic media, Enzyme Microb. Technol., 28, 145-154,2001.
Cernia, E., Palocci, C., Soro, S., The role of the reaction medium in lipase-catalyzed esterifications and transesterifications, CPL, 93, 157-168, 1998.
Chang, C.S., Tsai, S.W. Kuo, J., Lipase-catalyzed dynamic resolution of naproxen 2,2,2-trifluoroethyl thioester by hydrolysis in isooctane, Biotechnol. and Bioeng., 64, 120-126, 1999.
Chang, C.S., Tsai, S.W. Lin, C.N., Enzymatic resolution of (RS)-2-arylpropionic acid thioesters by Candida Rugosa lipase-catalyzed thiotransesterification or synthesis in organic Solvents, Tetra. Asym., 9, 2799-2807, 1998.
Chang, C.S., Tsai, S.W., Lipase-catalyzed dynamic resolution of naproxen thioester by thiotransesterification in isooctane, Biochem. Eng. J., 3, 239-242, 1999.
Chen, C.C., Tsai, S.W., Carica papaya lipase: a novel biocatalyst for enantioselective hydrolysis of (R,S)-naproxen 2,2,2-trifluoroethyl ester, Enzyme Microb. Technol., 36, 127-132, 2005.
Chen, C.S., Fujimoto, Y., Girdaukas, G., Sih, C.J., Quantitative analyses of biochemical kinetic resolutions of enantiomers , J. Am. Chem. Soc., 104,1294-1299, 1982.
Cheng, Y. C., Tsai, S.W., Enantioselective esterification of (RS)-2-(4-chlorophenoxy)- propionic acid via Carica papaya lipase in organic solvents, Tetrahedron: Asymmetry, 15, 2917-2920, 2004.
Cheng, Y.C., Tsai, S.W., Effects of side-reactions on the dynamic kinetic resolution of enzyme-catalyzed irreversible acyl transfer under controlled initial water activity, ChIChE, 34, 457-469. 2003b.
Cheng, Y.C., Tsai, S.W., Effects of water activity and alcohol concentration on the kinetic resolution of lipase-catalyzed acyl transfer in organic solvents, Enzyme and Microb. Technol., 32, 362-368, 2003a.
Cohen, D.P., The Independent Research Group, Chiral Quest, Inc., http://www.cohenresearch.com/reports/cqst_10-10-03.pdf , October 10,2003
Colton, I.J., Ahmed, S.N., Kazlauskas, R.J., A 2-propanol treatment increases the enantioselectivity of Candida rugosa lipase toward esters of chiral carboxylic acids, J. Org. Chem., 60, 212-217, 1995.
Crossley, R., Chirality and biological activity of drugs, CRC Press, 1995.
Dernoncour, R., Azerad, R., Enantioselective hydrolysis of 2-(chlorophenoxy) propionic esters by esterases, Tetra. Lett., 28, 4661-5664, 1987.
Dhuique-Mayer, C., Caro, Y., Pina, M., Ruales, J., Dornier, M., Graille, J., Biotech. Lett., 23, 1021-1024, 2001.
DirLam N.L., Moore B.S., Urban F.J., Novel synthesis of the aldose reductase inhibitor sorbinil via amidoalkylation, intramolecular oxazolidin-5-one alkylation, and chymotrypsin resolution, J. Org. Chem., 52, 3587-3591, 1987.
Ducret A., Trani M., Lortie R., Lipase-catalyzed enantioselective esterification of ibuprofen in organic solvents under controlled water activity, Enzyme Microb. Technol., 22, 212-216, 1998.
Eftink, MR., Anusiem, AC., Biltonen, RL., Enthalpy–entropy compensation and heat capacity changes for protein–ligand interactions: general thermodynamic models and data for the binding of nucleotides toribonuclease A, Biochemistry, 22, 3884–3896, 1983.
Ernst, H., Henrich, K., Ditrich, K., Process for the preparation of meso-zeaxanthin, US 6743954, 2004.
Faber, K., Biotransformation in Organic Chemistry-A Textbook. Heidelberg, Springer 1997.
Faber, K., Non-sequential processes for the transformation of a racemate into a single stereoisomeric product: proposal for stereochemical classification, Chem.Eur. J. 7, 5005-5010, 2001.
Faber, K., Riva, S., Enzyme-catalyzed irreversible acyl transfer, Synthesis, 24, 895-910, 1992.
Fersht, A., Enzyme structure and mechanism, Freeman, New York, 1985.
Garcia, T., Coteron, A., Martinez, M., Aracil. J., Kinetic model for the esterication of oleic acid and cetyl alcohol using an immobilized lipase as catalyst, Chemical Engineering Science, 55, 1411-1423, 2000.
Gihani, M.T.E., Williams, J.M.J., Dynamic kinetic resolution, Curr. Opin. Chem. Biol., 3, 11-15, 1999.
Gotor, V., Non-conventional hydrolase chemistry: amide and carbamate bond formation catalyzed by lipases, Bioorg. Med. Chem., 7, 2189-, 1999.
Halling, P. L., Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis, Enzyme Microb. Technol, 16, 178-206, 1994.
Hari Krishna, S., Karanth, S.N.G., Lipase-catalyzed synthesis of isoamyl butyrate a kinetic study, Biochimica et Biophysica Acta ,1547, 262-267, 2001.
Hartley, D., Kidd, H., The agrochemicals handbook, 2nd ed., Royal Society of Chemistry, Nottingham, 1987.
Hazarika, S., Dutta, N.N., Transesterification of 2- o-benzylglycerol with vinyl acetate by immobilized lipase: study of reaction and deactivation kinetics, organic process research & development, 8, 229-237, 2004.
Hazeldine, S.T., Polin, L., Kushner, J., Paluch, J., White, K., Edelstein, M., Palomino, M., Corbett, T.H., Horwitz, J.P., Design, synthesis, and biological evaluation of analogues of the antitumor agent, 2-{4-[(7-Chloro-2-quinoxalinyl)oxy]phenoxy} propionic Acid (XK469), J. Med. Chem., 44, 1758-1776, 2001.
Huerta, F.F., Minidis, A.B.E., Backvall, J.E., Racemisation in asymmetric synthesis. dynamic kinetic resolution and related processes in enzyme and metal catalysis, Chem. Soc. Rev., 30, 321-331, 2001.
Ikeda, H., Wataya, T., Method for manufacturing optically active 2- methylpiperazine, JP 2002-332277 A, 2002.
Jha, A., K. Bisht, S., Parmar, V.S., Potential useful lipase-catalyzed transesterifications, Proc. Indian Acad. Sci., 106, 1191-, 1994.
Johnson, D.W., Jr.; Singleton, D. A. Nonlinear effects in kinetic resolutions, J. Am. Chem. Soc., 121, 9307-9312, 1999.
Jourdain, F., Hirokawa, T., Kogane, T., Resolution of (R,S)-mandelic and (R,S)-2-(chlorophenoxy)propionic acid derivatives by crystallization of their diastereomeric amides with (R)- or (S)-α-arylethylamines, Tetra. Lett., 40, 2307-2310, 1999.
Kawamoto, T., Sonomoto, K., Tanaka, A., Efficient optical resolution of 2-(4-chlorophenoxy)propanoic acid with lipase by use of organosilicon compounds as substrate: the role of silicon atom in enzymatic recognition, J. Biotechnol., 18, 85-92, 1991.
Kilcawley, K. N., Wilkinson, M. G., Fox, P. F., Determination of key enzyme activities in commercial peptidase and lipase preparations from microbial or animal sources, Enzyme Microb. Technol., 31, 310-320, 2002.
Kitamura, M., Suga, S., Oka, H., Noyori, R. J., Quantitative analysis of the chiral amplification in the amino alcohol-promoted asymmetric alkylation of aldehydes with dialkylzincs, Am. Chem. Soc., 120, 9800-9809, 1998.
Kitamura, M., Tokunga, M., Noyori, R., Mathematical treatment of kinetic resolution of chirally labile substrates, Tetrahedron, 49, 1853-1860, 1993.
Koeller, K.M., Wong, C.H., Enzymes for chemical synthesis, Nature, 409, 232-240, 2001.
Laane, C., Boeren, S., Vos, K., Veeger, C., Rules for optimization of biocatalysis in organic solvents, Biotechnol. Bioeng., XXX, 81-87, 1987.
Lee E.G., Won, H.S., Chung, B.H., Enantioselective hydrolysis of racemic naproxen methyl ester by two-step acetone-treated Candida rugosa lipase, Process Biochemistry, 37, 293–298, 2001.
Lemieux, R.U., The origin of the specificity in the recognition of olisaccharides by proteins, Chem. Soc. Rev., 18, 347-374, 1989.
Liantonio A., Accardi A., Carbonara, G., Fracchiolla, G., Loiodice, F., Tortorella, P., Traverso, S., Guida, P., Pierno, S., De Luca, A., Camerino, D.C., Pusch, M., Molecular requisites for drug binding to muscle CLC-1 and renal CLC-K channel revealed by the use of phenoxy-alkyl derivatives of 2-(p-chlorophenoxy)propionic acid, Mol. Pharmacol., 62, 265-271, 2002.
Liantonio, A., Pusch, M., Picollo, A., Guida, P., De Luca, A., Pierno, S., Fracchiolla, G., Loiodice, F., Tortorella, P., Conte Camerino, D., Investigations of pharmacologic properties of the renal CLC-K1 chloride channel co-expressed with barttin by the use of 2-(p-Chlorophenoxy)propionic acid derivatives and other structurally unrelated chloride channels blockers, J. Am. Soc. Nephrol., 15, 13-20, 2004.
Lin, C. N., Tsai, S.W., Dynamic kinetic resolution of suprofen thioester via coupled trioctylamine and lipase catalysis, Biotechnol. Bioeng., 69, 31-38, 2000.
Lundh, M., Nordin, O., Hedenstrom, E., Hogberg, H.E., Enzyme catalyzed irreversible transesterification with vinyl acetate. are they really irreversible? Tetrahedron: Asymmetry, 6, 2237-2244, 1995.
Luukas, T. O., Girard, C., Fenwick, D. R., Kagan, H. B. J., Kinetic resolution when the chiral auxiliary is not enantiomerically pure: normal and abnormal behavior, Am. Chem. Soc., 121, 9299-9306,1999.
Martin, A., Komada, M.R., Sane, D.C., Abnormal angiogenesis in diabetes mellitus, Medicinal Research Reviews, 23, 117-145, 2003.
Mohile, S.S., Potdar, M.K., Harjani, J.R., Nara, S.J., Salunkhe, M.M., Ionic liquids: efficient additives for Candida rugosa lipase-catalyzed enantioselective hydrolysis of butyl 2-(4-chlorophenoxy)propionate, J. Mol. Catal. B: Enzymatic, 30, 185-188, 2004.
Mukherjee, K. D. In Engineering of/with Lipases; Malcata F. X. Eds. Plant lipases in lipid biotransformation. Kluwer-Academic-Elsevier, Dordrecht, 391-401, 1995.
Ng, I.S., Tsai, S.W., Hydrolytic resolution of (R,S)-Naproxen 2,2,2-trifluoroethyl thioester by Carica papaya lipase in water-saturated organic Solvents, Biotechnol. Bioeng., 89, 88-95, 2005.
Norin, M., Olson, O., Svendsen, A., Edholm, O., Hult, K., Theoretical studies of Rhizomucor miehei lipase activation, Prot. Engin., 6, 885-893, 1993.
Noyori, R., Tokunaga, M., Kitamura, M., Stereoselective organic synthesis via dynamic kinetic resolution, Bull. Chem. Soc. Jpn., 68, 36-, 1995.
Ottosson, J., Fransson, L., King, J.W., Hult, K., Size as a parameter for solvent effects on Candida antarctica lipase B enantioselectivity, Biochimica et Biophysica Acta, 1594, 325-334, 2002.
Overbeeke, P.L.A., Govardhan, C., Khalaf, N., Jongejan, J.A., Heijnen, J.J., Influence of lid conformation on lipase enantioselectivity, J. Mol. Cat. B: Enzymatic, 10, 385-393, 2000.
Palocci, C., Soro, S., Cerica, E., Fiorillo, F., Belsito, C. M. A., Monacelli, B., Monache, D., Pasqua, G., Plant Science, 165, 577-582, 2003.
Palomer, A., Cabre, M., Ginesta, J., Mauleon, D., Carganico, G., Resolution of rac-Ketoprofen esters by enzymatic reactions in organic media, Chirality, 5, 320- 1993.
Pan, S.H., Kawamoto, T., Fikui, T., Sonomoto, K., Tanaka, A., Stereoselective esterification of halogen-containing carboxylic acids by lipase in organic solvent: effects of alcohol chain length, Appl. Microbiol. Biotechnol. 34, 47-51, 1990.
Parida, S., Dordick, J. S., Substrate structure and solvent control lipase catalysis and enantioselectivity in organic media, J. Am. Chem. Soc. 113, 2253-2259, 1991.
Park, S., Kazlauskas, R.J., Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations, J. Org. Chem., 66, 8395-8401, 2001.
Park, S., Kazlauskas, R.J., Improved Preparation and Use of Room-Temperature Ionic Liquids in Lipase-Catalyzed Enantio- and Regioselective Acylations, J. Org. Chem., 66, 8395-8401, 2001.
Parker, M.C., Brown, S.A., Robertson, L., Turner, N.J., Enhancement of Candida antarctica lipase B enantioselectivity and activity in organic solvents, Chem. Commun., 20, 2247-2248, 1998.
Pe´rez, S., Imberty, A., Carver, JP., Molecular modeling: an essential component in the structure determination of oligosacharides and polysaccharides, Adv. Comp. Biol., 1, 147–202, 1994.
Pesti, J. A., Yin, J., Lin, H.Z., Anzalone, L. J., Reversible michael reaction-enzymatic hydrolysis: a new variant of dynamic resolution, J. Am. Chem. Soc., 123, 11075-11076, 2001.
Phillips, R.S., Temperature modulation of the stereochemistry of enzymatic catalysis: prospects for exploitation, Trends in Biotechnology, 14, 13-16, 1996.
Rantwijk, V.F., Hacking, M. A. P. J., Sheldon, R.A., Lipase-catalyzed synthesis of carboxylic amides: nitrogen nucleophiles as acyl acceptor, Monatsh. Chemie, 131, 549-556, 1999.
Rotticci, D., Rotticci-Mulder J.C., Denman, S., Norin, T., Hult, K., Improved enantioselectivity of a lipase by rational protein engineering, Chem. Biochem., 2, 766-770, 2001.
Santaniello, E., Ferraboschi, P., Grisenti, P., Lipase-catalyzed transesterification in organic solvents: applications to the preparation of enantiomerically pure compounds, Enzyme Microb. Technol., 15, 367-382, 1993.
Schmid, A., Hollmann, F., Park, J.B., Buhler, B., The use of enzymes in the chemical industry in Europe, Curr. Opin. Biotechnol., 13, 359-366, 2002.
Schmid, R.D., Verger, R., Lipases: interfacial enzymes with attractive applications, Angew. Chem. Int. Ed., 37, 1608-1633, 1998.
Secor, J., Cse’ke, C., Owen, W. J., Aryloxyphenoxypropanoate and cyclohexanedione herbicides in biocatalysis in agricultural biotechnology, Whitaker, J. R., Sonnet, P. E., American Chemical Society, Washington DC, 265-276, 1989.
Segel, Irwin H., Enzyme kinetics: behavior and analysis of rapid equilibrium and steady state enzyme systems, New York, Wiley, 1975.
Solomons T.W.G., Organic chemistry, New York Wiley, 1996.
Srinivas N.R., Barbhaiya R.H., Midha K.K., Enatiomeric drug development: issues, considerations, and regulatory requirements, Journal of pharmaceutical sciences, 90, 1205-1215, 2001.
Stecher, H., Faber, K., Biocatalytic deracemization techniques: dynamic resolutions and stereoinversions, Synthesis, 29, 1-16, 1997.
Steenkamp, L., Brady, D., Screening of commercial enzymes for the enantioselective hydrolysis of R,S-naproxen ester, Enzyme Microb. Technol., 32, 472-477, 2003.
Stinson, S.C., Chiral drugs, Chem. Eng. News, 78, 55-78, 2000.
Stinson, S.C., Chiral pharmaceuticals, Chem. Eng. News, 79, 79-97, 2001.
Straathof, A.J.J., Rakels, J.L.L., Heijnen, J.J., Kinetics of the enzymatic resolution of racemic compounds in Bi-Bi reactions, Biocatalysis, 7, 13-27, 1992.
Theil F., Enhancement of selectivity and reactivity of lipases by additives, Tetrahedron, 56, 2905-2919, 2000.
Tsai, S.W., Cheng, I.C., Hung, C.M., Effects of hydrolysis and esterification side-reactions on the kinetic resolution of enzyme-catalyzed irreversible transesterification in organic solvents, Chem. Eng. Sci., 55, 4571-4582, 2000.
Tsai, S.W., Dordick, J.S., Extraordinary enantiospecificity of lipase catalysis in organic media induced by purification and catalyst engineering, Biotechnol. Bioeng., 52, 296-300, 1996.
Tsai, S.W., Wei, H.J., Enantioselective esterification of racemic naproxen by lipases in organic solvent, Enzyme Microb. Technol., 16, 328-333, 1994.
Tsai, S.W., Wei, H.J., Kinetics of enantioselective esterification of naproxen by lipase in organic solvents. Biocatalysis, 11, 33-45, 1994.
Tsai. S.W., Wei, H.J., Self-normalize analysis of lipase-catalyzed conversion of naproxen enantiomers, J. Liq. Chromatogra., 16, 2993, 1993.
Ueji, S., Fujio, R., Okubo, N., Miyazawa, T., Kurita, S., Kitadani, M., Muromatsu, A. Biotechnol. Lett., 14, 163, 1992.
Ueji, S.I., Tanaka, H., Hanaoka, T., Ueda, A., Watanabe, K., Kaihatsu, K., Ebara, Y., Effects of chemical modification of lipase on its enantioselectivity in organic solvents, Chem. Lett., 1, 1066-1067, 2001.
Ueji, S.i., Taniguchi, T., Takashi, O.,Watanabe, K., Ebara, Y., Ohta, H., Flexibility of lipase brought about by solvent effects controls its enantioselectivity in organic media, Bull. Chem. Soc. Jpn., 76, 399–403, 2003.
Ujang, Z., Husain, W.H., Seng, M.C., Abdul, A.H., Rashid, A.H.A., The kinetic resolution of 2-(4-chlorophenoxy)propionic acid using Candida rugosa lipase, Proc. Biochem., 37,63-71, 2003.
Valivety, R. H., Halling, P.L., Macrae, A.R., Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents, Biochim. Biophy. Acta, 1118, 218-222, 1992.
van Beilen, J.B., Li, Z., Enzyme technology: an overview, Curr. Opin. Biotech., 13, 338-344, 2002.
Villeneuve P., Plant lipases and their applications in oils and fats modification, Eur. J. Lipid Sci. Technol. 105, 308–317, 2003.
Watanabe, K., Ueji, S.I., Dimethyl sulfoxide as a co-solvent dramatically enhances the enantioselectivity in lipase-catalyzed resolutions of 2-phenoxypropionic acyl derivatives, J. Chem. Soc. Perkin Trans., 1, 1386-1390, 2001.
Weber, H. K., Weber H., Kazlauskas, R.J., Watching lipase-catalyzed acylations using 1H NMR: competing hydrolysis of vinyl acetate in dry organic solvents, Tetrahedron: Asymmetry, 10, 2635-2638, 1999.
Williams A, Agrochemicals take a turn into chirality, Chemical market reporter, 260, 23, p13, 2001a.
Williams A, Chirality and agrochemicals, Crop protection monthly, 30, No141, 2001b.
Worthing, C.R., The Pesticide Manual, 6th ed., BCPC Publication, Lodon, 1979, 329.
Wu, S.H., Chu, F.Y., Wang, K.T., Reversible enantioselectivity of enzymatic reactions by media, Bioorg. Med. Chem. Lett., 1, 339-342, 1991.
Wu, S.H., Guo, Z.W., Sih, C.J., Enhancing the enantioselectivity of Candida lipase catalyzed ester hydrolysis via noncovalent enzyme modification, J. Am. Chem. Soc., 112, 1990-1995, 1990.
Yennawar, N.H., Yennawar, H.P., Farber, G.K., X-ray crystal structure of a-chymotrypsin in hexane, Biochemistry, 33, 7326-7336, 1994.
Yoshida, K., Method for producing optically active hydrazine compound, JP 2003055375, 2003.
Zaks, A. , and Klibanov, A. M., Enzyme-catalyzed process in organic solvents, Proc. Natl. Acad. Sci. USA., 82, 3192-3196, 1985.
Zaks, A. ,and Klibanov, A. M., Enzymatic catalysis in nonaqueous solvents, J. Biol. Chem., 263, 3194-3201, 1988.
Zheng, H., Covey, J.M., Tosca, P.J., Turner, N., Chan, K.K., Chiral high-performance liquid chromatographic analysis of the enantiomers of XK469, a new antitumor agent, in plasma and urine, J. Pharm. Biomed. Ana., 28, 287-294, 2002.
陳嘉盈,在有機溶劑中利用酵素進行外消旋Fenoprofen硫酯之水解動態動力分割,國立成功大學碩士論文,2001。
蔡少偉,酵素科技在化學工業之應用,化工技術,11卷5期196-207頁,2003。