| 研究生: |
簡均儒 Chien, Chun-Ru |
|---|---|
| 論文名稱: |
影響台灣高鐵因素之營收管理策略分析 The impact factors of revenue management strategies for Taiwan High Speed Rail |
| 指導教授: |
鄭永祥
Cheng, Yung-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 台灣高鐵 、營收管理 、向量誤差修正模型 、因果關係檢定 、衝擊反應分析 、預測誤差變異數分解 、成本效益分析 |
| 外文關鍵詞: | Taiwan High Speed Rail, revenue management, vector error correction model, granger causality test, impulse-response function analysis, variance decomposition, cost-benefit analysis |
| 相關次數: | 點閱:205 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣高鐵根據營收管理的概念,推出許多行銷策略,雖然搭乘人數不斷因為優惠而增加,但台灣高鐵目前平均載客率僅約50%,本研究認為行銷策略推出時,較少考量到乘客在接受訊息會有時間上的落差,無法立刻反應在載客運量與營收上,進而造成資源分配無效率問題,而且影響載客運量與營收變化的因素複雜,難以分辨是否來自於推出行銷策略的影響。本研究將以台灣高鐵為主要探討對象,建構時間因素、總體因素及行銷策略對台灣高鐵載客運量的向量誤差修正模型,利用因果關係檢定與衝擊反應分析找出各因素影響載客運量的長度與幅度,利用預測誤差變異數分解深入分析造成載客運量增加的來源所占比例,試圖利用更符合成本的方式推出行銷策略。
實證結果發現,時間因素、總體因素及行銷策略與運量和營收存在長期均衡關係,時間因素中的連假因素與農民曆因素平均對運量和營收有立即反應且造成10%至15%影響,總體因素中消費者物價指數與國民生產毛額平均於落後一期至兩期後對運量及營收造成20%至25%影響,行銷策略分成三階段討論效果為何,平均落後一期至兩期後對運量與營收造成不同幅度的影響,且隨著應變數為運量或營收影響行銷策略幅度不同,營收與運量不一定會等幅度變化,因此要適時掌握能控制的變數,使行銷策略對運量與營收的貢獻極大化。最後依據行銷策略影響營收的比例進行成本效益分析,隨著大環境變化透過三階段推出行銷策略使營收維持在一定的範圍,未來台灣高鐵可以依據本研究結果推出不同的行銷策略同時增加運量與營收。
According to the concept of revenue management, Taiwan High Speed Rail carried out many marketing strategies. We consider the inefficient resource allocation and it’s hard to identify the factors which effect on ridership. We built vector error correction model (VECM) and structural analysis in explaining the relationship among time, macroeconomics and marketing strategies. The empirical results are as following. First, long-term cointegrations exists between trends for ridership and all the factors discussed in this study. In time factors, consecutive holidays and lunar calendar have initiate impact on 10% to 15% of ridership and revenue. In macroeconomics factors, customer price index and gross domestic product have average lag one or two lengths impact on 20% to 25% of ridership and revenue. The marketing strategies which divided by three phase depend on economic environment have average lag one or two lengths impact on ridership and revenue. Second, because of ridership and revenue do not always change simultaneously, we control the variables such as marketing strategies to maximum ridership and revenue. It does conclude that the benefit of marketing strategies is significant. THSR will carry out various marketing strategies in the future.
1. 台灣高鐵網站http://www.thsrc.com.tw/index.html
2. Abrahamse, W., Steg, L., Gifford, R., & Vlek, C. (2009). Factors influencing car use for commuting and the intention to reduce it: A question of self-interest or morality? , Transportation research part F: traffic psychology and behavior, 12(4), 317-324.
3. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second international symposium on information theory (pp. 267-281). Akademinai Kiado.
4. Anderson, T. W., & Hsiao, C. (1981). Estimation of dynamic models with error components. , Journal of the American statistical Association, 76(375), 598-606.
5. Arslanturk, Y., Balcilar, M., & Ozdemir, Z. A. (2011). Time-varying linkages between tourism receipts and economic growth in a small open economy. Economic Modelling, 28(1), 664-671.
6. Asari, F. F. A. H., Baharuddin, N. S., Jusoh, N., Mohamad, Z., Shamsudin, N., & Jusoff, K. (2011). A vector error correction model (VECM) approach in explaining the relationship between interest rate and inflation towards exchange rate volatility in Malaysia. World Applied Sciences Journal, 12, 49-56.
7. Barsky, R. B., & Sims, E. R. (2011). News shocks and business cycles. Journal of Monetary Economics, 58(3), 273-289.
8. Batchelor, R., Alizadeh, A., & Visvikis, I. (2007). Forecasting spot and forward prices in the international freight market. International journal of forecasting,23(1), 101-114.
9. Behrens, C., & Pels, E. (2012). Intermodal competition in the London–Paris passenger market: High-Speed Rail and air transport. Journal of Urban Economics, 71(3), 278-288.
10. Campbell, J. Y. (1991). A variance decomposition for stock returns (No. w3246). National Bureau of Economic Research.
11. Campbell, J. Y., & Ammer, J. (1993). What Moves the Stock and Bond Markets? A Variance Decomposition for Long‐Term Asset Returns. The Journal of Finance, 48(1), 3-37.
12. Campbell, S. D., Davis, M. A., Gallin, J., & Martin, R. F. (2009). What moves housing markets: A variance decomposition of the rent–price ratio. Journal of Urban Economics, 66(2), 90-102.
13. Cascetta, E., & Pagliara, F. (2008). Integrated railways-based policies: the Regional Metro System (RMS) project of Naples and Campania. Transport Policy, 15(2), 81-93.
14. Cermak, D. S., File, K. M., & Prince, R. A. (2011). Customer participation in service specification and delivery. Journal of Applied Business Research (JABR), 10(2), 90-97.
15. Cervero, R. (2006). Transit oriented development’s ridership bonus: a product of self-selection and public policies.
16. Cheng, Y. H. (2010). High-speed rail in Taiwan: New experience and issues for future development. Transport policy, 17(2), 51-63.
17. Chen, M. C., & Wei, Y. (2011). Exploring time variants for short-term passenger flow. Journal of Transport Geography, 19(4), 488-498.
18. Chen, Y., & Farias, V. F. (2010). Simple policies for dynamic pricing with imperfect forecasts.
19. Chen, Z. (2010). Who Ride the High Speed Rail in the United States: The Acela Express Case Study. In 2010 Joint Rail Conference, JRC2010, April (pp. 27-29).
20. Chen, Z. (2011). Ridership, Fare and On-Time Performance: A Granger Causality Analysis of Intercity Passenger Train in the Northeast Corridor. Available at SSRN 1788522.
21. Cheung, W., Fung, S., & Tsai, S. C. (2010). Global capital market interdependence and spillover effect of credit risk: evidence from the 2007–2009 global financial crisis. Applied Financial Economics, 20(1-2), 85-103.
22. Chiang, W. C., Russell, R. A., & Urban, T. L. (2011). Forecasting ridership for a metropolitan transit authority. Transportation research part A: policy and practice, 45(7), 696-705.
23. Chou, J. S., & Kim, C. (2009). A structural equation analysis of the QSL relationship with passenger riding experience on high speed rail: An empirical study of Taiwan and Korea. Expert Systems with Applications, 36(3), 6945-6955.
24. Chou, J. S., Kim, C., Kuo, Y. C., & Ou, N. C. (2011). Deploying effective service strategy in the operations stage of high-speed rail. Transportation Research Part E: Logistics and Transportation Review, 47(4), 507-519.
25. Chuang, H. M., Chu, C. P., & Lin, Y. T. (2011, December). HSR buying behavior modeling-Taiwan High Speed Railway case. In Industrial Engineering and Engineering Management (IEEM), 2011 IEEE International Conference on(pp. 679-683). IEEE.
26. Cizaire, C., & Belobaba, P. (2013). Joint optimization of airline pricing and fare class seat allocation. Journal of Revenue and Pricing Management, 12(1), 83-93.
27. Crevier, B., Cordeau, J. F., & Savard, G. (2012). Integrated operations planning and revenue management for rail freight transportation. Transportation Research Part B: Methodological, 46(1), 100-119.
28. Cross, R. G., Higbie, J. A., & Cross, Z. N. (2010). Milestones in the application of analytical pricing and revenue management. Journal of Revenue & Pricing Management, 10(1), 8-18.
29. Currie, G., & Rose, J. (2008). Growing patronage–Challenges and what has been found to work. Research in Transportation Economics, 22(1), 5-11.
30. Dablanc, L. (2009). Regional policy issues for rail freight services. Transport Policy, 16(4), pp.163-172.
31. Dekimpe, M., & Hanssens, D. (2004). Persistence modeling for assessing marketing strategy performance. Marketing Science Institute, Cambridge (2004), pp. 69–93
32. Delbosc, A., & Currie, G. (2012). Modelling the causes and impacts of personal safety perceptions on public transport ridership. Transport Policy, 24, 302-309.
33. De Rus, G., & Nombela, G. (2007). Is investment in high speed rail socially profitable?. Journal of Transport Economics and Policy (JTEP), 41(1), pp.3-23.
34. Diana, M., & Pronello, C. (2010). Traveler segmentation strategy with nominal variables through correspondence analysis. Transport Policy, 17(3), pp.183-190.
35. Diebold, F. X., & Yilmaz, K. (2009). Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets*. The Economic Journal, 119(534), pp.158-171.
36. Eckstein, N. (2011). The relationship between vehicle miles traveled and economic activity.
37. Elmaghraby, W., & Keskinocak, P. (2003). Dynamic pricing in the presence of inventory considerations: Research overview, current practices, and future directions. Management Science, 49(10), pp.1287-1309.
38. Engsted, T., Pedersen, T. Q., & Tanggaard, C. (2012). Pitfalls in VAR based return decompositions: A clarification. Journal of Banking & Finance, 36(5), pp.1255-1265.
39. Engle, R. F., & Yoo, B. S. (1987). Forecasting and testing in co-integrated systems. Journal of econometrics, 35(1), 143-159.
40. Gkritza, K., Karlaftis, M. G., & Mannering, F. L. (2011). Estimating multimodal transit ridership with a varying fare structure. Transportation Research Part A: Policy and Practice, 45(2), pp.148-160.
41. Glick, R., & Hutchison, M. (2009). Navigating the trilemma: Capital flows and monetary policy in China. Journal of Asian Economics, 20(3), 205-224.
42. González‐Savignat, M. (2004). Will the high‐speed train compete against the private vehicle?. Transport reviews, 24(3), 293-316.
43. Guo, P., & Zipkin, P. (2007). Analysis and comparison of queues with different levels of delay information. Management Science, 53(6), pp.962-970.
44. Guzhva, V. S., & Pagiavlas, N. (2004). US Commercial airline performance after September 11, 2001: decomposing the effect of the terrorist attack from macroeconomic influences. Journal of Air Transport Management, 10(5), pp.327-332.
45. Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, pp.424-438.
46. Hagler, Y., & Todorovich, P. (2009). Where high-speed rail works best. America 2050.
47. Haire, A. R., & Machemehl, R. B. (2010). Regional and modal variability in effects of gasoline prices on US transit ridership. Transportation Research Record: Journal of the Transportation Research Board, 2144(1), 20-27.
48. Harnack, L. (2008). Whistler and Valley Express Transit System: A Small Agency Gears up for Tourists and Soon, the World. Mass Transit, 34(5).
49. Heo, C. Y., Lee, S., Mattila, A., & Hu, C. (2013). Restaurant revenue management: Do perceived capacity scarcity and price differences matter? International Journal of Hospitality Management, 35, pp.316-326.
50. Hsiao, C. H., & Yang, C. (2010). Predicting the travel intention to take High Speed Rail among college students. Transportation research part F: traffic psychology and behaviour, 13(4), pp.277-287.
51. Jääskelä, J. P., & Jennings, D. (2011). Monetary policy and the exchange rate: Evaluation of VAR models. Journal of International Money and Finance, 30(7), pp.1358-1374.
52. Jerath, K., Netessine, S., & Veeraraghavan, S. K. (2010). Revenue management with strategic customers: Last-minute selling and opaque selling. Management Science, 56(3), pp.430-448.
53. Johansen, S., & Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration—with applications to the demand for money. Oxford Bulletin of Economics and statistics, 52(2), pp.169-210.
54. Kotler, P. (2011). Philip Kotler's Contributions to Marketing Theory and Practice. Review of Marketing Research, 8, pp.87-120.
55. Kuo, C. W., & Tang, M. L. (2011). Relationships among service quality, corporate image, customer satisfaction, and behavioral intention for the elderly in high speed rail services. Journal of Advanced Transportation.
56. Lane, B. W. (2012). A time-series analysis of gasoline prices and public transportation in US metropolitan areas. Journal of Transport Geography, 22, pp.221-235.
57. Lee, K. S., Eom, J. K., Lee, J., & Moon, D. S. (2013). The Preliminary Analysis of Introducing 500 km/h High-Speed Rail in Korea. International Journal of Railway, 6(1), pp.26-31.
58. Lewis, C. A., Arthur, G., & Onyejekwe, S. (2012). Reviewing, Analyzing and Updating Marketing Strategies to Increase Public Transit Ridership (No. SWUTC/12/476660-00050-1). Southwest Region University Transportation Center, the Center for Transportation Training and Research, Texas Southern University.
59. Li, C., & Zhang, F. (2013). Advance demand information, price discrimination, and preorder strategies. Manufacturing & Service Operations Management,15(1), pp.57-71.
60. Littlewood, K. (2005). Special Issue Papers: Forecasting and control of passenger bookings. Journal of Revenue and Pricing Management, 4(2), pp.111-123.
61. Li, Y. T., Schmöcker, J. D., & Fujii, S. (2014). Demand Adaptation towards New Transport Modes: Case of High Speed Rail in Taiwan. In Transportation Research Board 93rd Annual Meeting (No. 14-1200).
62. Marazzo, M., Scherre, R., & Fernandes, E. (2010). Air transport demand and economic growth in Brazil: A time series analysis. Transportation Research Part E: Logistics and Transportation Review, 46(2), pp.261-269.
63. Meissner, J., & Strauss, A. (2012). Network revenue management with inventory-sensitive bid prices and customer choice. European Journal of Operational Research, 216(2), pp.459-468.
64. Mertens, K., & Ravn, M. O. (2010). Measuring the Impact of Fiscal Policy in the Face of Anticipation: A Structural VAR Approach*. The Economic Journal,120(544), pp.393-413.
65. Nelson, C. R., & Plosser, C. R. (1982). Trends and random walks in macroeconmic time series: some evidence and implications. Journal of monetary economics, 10(2), pp.139-162.
66. Nocke, V., Peitz, M., & Rosar, F. (2011). Advance-purchase discounts as a price discrimination device. Journal of Economic Theory, 146(1), pp.141-162.
67. Nyondo, C. R., Davidova, S. M., & Bailey, A. B. (2013). On Market Liberalisation and Efficiency: A Structural VECM Analysis of Dry Beans Markets in Malawi.
68. Pauwels, K. (2004). How dynamic consumer response, competitor response, company support, and company inertia shape long-term marketing effectiveness. Marketing Science, 23(4), pp.596-610.
69. Pelletier, M. P., Trépanier, M., & Morency, C. (2011). Smart card data use in public transit: A literature review. Transportation Research Part C: Emerging Technologies, 19(4), pp.557-568.
70. Ratliff, R., & Gallego, G. (2013). Estimating sales and profitability impacts of airline branded-fares product design and pricing decisions using customer choice models. Journal of Revenue & Pricing Management.
71. Redman, L., Friman, M., Gärling, T., & Hartig, T. (2013). Quality attributes of public transport that attract car users: A research review. Transport Policy, 25, pp.119-127.
72. Rousseau, P. L., & Wachtel, P. (1998). Financial intermediation and economic performance: historical evidence from five industrialized countries. Journal of money, credit and banking, 657-678.
73. Santoso, D. S., Yajima, M., Sakamoto, K., & Kubota, H. (2012). Opportunities and strategies for increasing bus ridership in rural Japan: A case study of Hidaka City. Transport Policy, 24, pp.320-329.
74. Schmutzler, A. (2011). Local transportation policy and the environment. Environmental and Resource Economics, 48(3), pp.511-535.
75. Sharaby, N., & Shiftan, Y. (2012). The impact of fare integration on travel behavior and transit ridership. Transport Policy, 21, pp.63-70.
76. Shiftan, Y., Outwater, M. L., & Zhou, Y. (2008). Transit market research using structural equation modeling and attitudinal market segmentation. Transport Policy, 15(3), pp.186-195.
77. Sims, C. A. (1972). Money, income, and causality. The American Economic Review, 62(4), pp.540-552.
78. Sims, C.A., 1980, Macrceconomics and reality, Econometrica 48, pp.1-48
79. Sinha, A., & Gazley, A. (2012). Special issue on pricing and revenue management models in marketing. Journal of Revenue & Pricing Management,11(3), pp.251-252.
80. Talón-Ballestero, P., & González-Serrano, L. (2013). Future trends in revenue management. Journal of Revenue & Pricing Management, 12(3), 289-291.
81. Taylor, B. D., Miller, D., Iseki, H., & Fink, C. (2009). Nature and/or nurture? Analyzing the determinants of transit ridership across US urbanized areas. Transportation Research Part A: Policy and Practice, 43(1), pp.60-77.
82. Tsiotsou, R. H., & Goldsmith, R. E. (Eds.). (2012). Strategic Marketing in Tourism Services. Emerald Group Publishing.
83. Vlahogianni, E. I., Karlaftis, M. G., & Kopelias, P. (2010, September). Modeling freeway travel speed across lanes: A vector autoregressive approach. In Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on (pp. 569-574). IEEE.
84. Wang, J. (2011). Appraisal of factors influencing public transport patronage.
85. Weatherford, L. R., & Bodily, S. E. (1992). A taxonomy and research overview of perishable-asset revenue management: yield management, overbooking, and pricing. Operations Research, 40(5), pp.831-844.
86. Wen, C. H., Wang, W. C., & Fu, C. (2012). Latent class nested logit model for analyzing high-speed rail access mode choice. Transportation Research Part E: Logistics and Transportation Review, 48(2), pp.545-554.
87. Wieringa, J. E., & Horváth, C. (2005). Computing level-impulse responses of log-specified VAR systems. International Journal of Forecasting, 21(2), pp.279-289.
88. Wu, C. C., Liu, Y. F., Chen, Y. J., & Wang, C. J. (2012). Consumer responses to price discrimination: Discriminating bases, inequality status, and information disclosure timing influences. Journal of Business Research, 65(1), pp.106-116.
89. Xie, F., & Levinson, D. (2010). How streetcars shaped suburbanization: a Granger causality analysis of land use and transit in the Twin Cities. Journal of Economic Geography, 10(3), pp.453-470.
90. Yamaguchi, K., & Yamasaki, K. (2009). High-speed inter-city transport system in Japan past, present and the future (No. 2009/17). OECD Publishing.
91. Yang, C. W., & Chang, C. C. (2011). Applying price and time differentiation to modeling cabin choice in high-speed rail. Transportation Research Part E: Logistics and Transportation Review, 47(1), pp.73-84.
92. Zhang, D., & Adelman, D. (2009). An approximate dynamic programming approach to network revenue management with customer choice. Transportation Science, 43(3), pp.381-394.
校內:2020-01-14公開