| 研究生: |
黃世傑 Huang, Shih-Chieh |
|---|---|
| 論文名稱: |
機械設備與產品之碳足跡與水足跡評估方法研究 The Study of Assessment Method for Carbon Footprint and Water Footprint of Mechanical Equipment and Products |
| 指導教授: |
陳家豪
Chen, Ja-Hau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 碳足跡 、水足跡 、機械設備 、生命週期評估 |
| 外文關鍵詞: | Carbon footprint, Water footprint, Mechanical equipment, Life cycle assessment |
| 相關次數: | 點閱:150 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於近年來全球氣候變遷、能源危機與自然資源短少等問題,迫使人們不得不開始重視永續發展這項議題。其中歐盟為確保產業界能永續發展經營而開始制定「產品環境足跡指引」(Product Environmental Footprint Guide, PEF),產品環境足跡能藉由評估產品生命週期中各個階段對環境所造成的衝擊進而全面性的了解該產品對環境友善的程度。其中目前發展較為成熟的即為碳足跡與水足跡。碳足跡為計算產品生命週期中所有相對溫室氣體排放量,進而了解其對全球暖化的衝擊程度,而水足跡則是計算產品在水資源使用上的重要指標。
但對於台灣的機械產業而言,碳足跡與水足跡計算並不普遍,且計算時往往需要整個供應鏈廠商的配合盤查,因此時常面臨盤查數據無法取得的困境。因此本研究提出一套針對機械設備與產品之碳足跡與水足跡評估方法,依據機械產品的組成零件進行分類,並分析各個零件的原料組成、製程與運輸、使用情境進行計算,並配合生命週期評估軟體與文獻數據,計算出機械產品整個生命週期的碳足跡與水足跡。供機械工程師在設計機械設備或產品時,即能自行計算產品的碳足跡與水足跡,並從中改善產品的碳排放與耗水量,落實永續發展的指標。
The establishment of European Directive EuP and ErP has driven manufacturers to produce green products. Yet Carbon footprint and Water footprint are two important indicators to assess whether the product is environmentally friendly or not. But for Taiwan's machinery industry, carbon footprint and water footprint calculation is not common. Therefore, this study presents a carbon footprint and water footprint assessment method for mechanical engineers can be used when designing their new machine products. This method is based on life cycle assessment. First to classify every machine components, then analyze their raw material and manufacturing process. And according to the different transport, using and recycling situations have differnt calculate methods. Finally, use the life cycle assessment database and the literature data to accomplish the Carbon footprint and Water footprint assessment method.
[1] R. McLellan, L. Iyengar, B. Jeffries, and N. Oerlemans, "Living Planet Report 2014: species and spaces, people and places," WWF International, Gland, 2014.
[2] W. E. Rees, "Ecological footprints and appropriated carrying capacity: what urban economics leaves out," Environment and urbanization, vol. 4, pp. 121-130, 1992.
[3] B. W. Vigon and C. Harrison, "Life-cycle assessment: Inventory guidelines and principles," 1993.
[4] I. ISO, "14040: Environmental management–life cycle assessment–principles and framework," London: British Standards Institution, 2006.
[5] P. BSI, "2050: 2011 Specification for the assessment of the life cycle greenhouse gas emissions of goods and services," British Standards Institute: London, UK, 2011.
[6] T. ISO, "14067 (2013) Greenhouse gases—carbon footprint of products—requirements and guidelines for quantification and communication," The International Organization for Standardization, Geneva, vol. 52, 2013.
[7] 行政院環境保護署. 台灣產品碳足跡資訊網. http://cfp.epa.gov.tw/carbon/defaultPage.aspx
[8] 薛水添, 何燦穎, 陳俊達, 吳致呈, 陳福國, 王志強, et al., "馬達(3HP 4P)碳足跡產品生命週期評估之案例," 環境與能源研討會, 2010.
[9] C. Reich-Weiser, A. Vijayaraghavan, and D. Dornfeld, "Appropriate use of green manufacturing frameworks," Laboratory for Manufacturing and Sustainability, 2010.
[10] D. N. Kordonowy, "A power assessment of machining tools," Massachusetts Institute of Technology, 2002.
[11] T. Gutowski, J. Dahmus, and A. Thiriez, "Electrical energy requirements for manufacturing processes," in 13th CIRP international conference on life cycle engineering, 2006.
[12] H. Narita, H. Kawamura, T. Norihisa, L.-Y. Chen, H. Fujimoto, and T. Hasebe, "Development of prediction system for environmental burden for machine tool operation," JSME International Journal Series C, vol. 49, pp. 1188-1195, 2006.
[13] H. Narita, N. Desmira, and H. Fujimoto, "Environmental burden analysis for machining operation using LCA method," in Manufacturing Systems and Technologies for the New Frontier, ed: Springer, 2008, pp. 65-68.
[14] S. Rahimifard, Y. Seow, and T. Childs, "Minimising Embodied Product Energy to support energy efficient manufacturing," CIRP Annals-Manufacturing Technology, vol. 59, pp. 25-28, 2010.
[15] P. Nava, "Minimizing Carbon Emissions in Metal Forming," 2009.
[16] V. R. Murray, F. Zhao, and J. W. Sutherland, "Life cycle analysis of grinding: a case study of non-cylindrical computer numerical control grinding via unit-process life cycle inventory approach," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, "2012.
[17] G. Ameta, M. Mani, S. Rachuri, S. C. Feng, R. D. Sriram, and K. W. Lyons, "Carbon weight analysis for machining operation and allocation for redesign," International Journal of Sustainable Engineering, vol. 2, pp. 241-251, 2009.
[18] A. Morbidoni, C. Favi, and M. Germani, "CAD-Integrated LCA Tool: Comparison with dedicated LCA Software and Guidelines for the improvement," in Glocalized Solutions for Sustainability in Manufacturing, ed: Springer, 2011, pp. 569-574.
[19] 蘇煒淩, "工具機碳足跡評估方法與工具研究," 成功大學機械工程學系學位論文, pp. 1-97, 2012.
[20] J. A. Allan, "Virtual water-the water, food, and trade nexus. Useful concept or misleading metaphor?," Water International, vol. 28, pp. 106-113, 2003.
[21] WFN水足跡網站. http://waterfootprint.org/en/
[22] M. M. Aldaya, A. K. Chapagain, A. Y. Hoekstra, and M. M. Mekonnen, The water footprint assessment manual: Setting the global standard: Routledge, 2012.
[23] I. ISO, "DIS 14046 Water footprint–principles, requirements and guidelines," The International Organization for Standardization, 2013.
[24] M. Sachidananda and S. Rahimifard, "Reduction of water consumption within manufacturing applications," in Leveraging Technology for a Sustainable World, ed: Springer, 2012, pp. 455-460.
[25] M. Berger and M. Finkbeiner, "Methodological Challenges in Volumetric and Impact‐Oriented Water Footprints," Journal of Industrial Ecology, vol. 17, pp. 79-89, 2013.
[26] M. Berger, J. Warsen, S. Krinke, V. Bach, and M. Finkbeiner, "Water footprint of European cars: potential impacts of water consumption along automobile life cycles," Environmental science & technology, vol. 46, pp. 4091-4099, 2012.
[27] J. Yen, J. Zullo, F. Tejada, B. Bras, and T. Guldberg, "A Model for Water Consumption in Vehicle Use within Urban Regions," SAE Technical Paper2011.
[28] H. Kim, T. Wallington, S. Muller, D. Berdish, B. Bras, F. Tejada, et al., "Water use in the life cycle of light-duty vehicles," in Proc. Inter. Conf. on EcoBalance 2012; Yokohama, Japan, Nov. 20-23, 2012, pp. C1-C08.
[29] F. Tejada, B. Bras, and T. Guldberg, "Direct and indirect water consumption in vehicle manufacturing," in ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2012, pp. 465-475.
[30] F. Tejada, J. Zullo, T. G. Tejada, and B. Bras, "Water Consumption in a Vehicle Life Cycle," in Leveraging Technology for a Sustainable World, ed: Springer, 2012, pp. 73-78.
[31] F. J. Tejada, "Quantifying the life cycle water consumption of a passenger vehicle," 2012.
[32] 陳彥伯, "綠色工具機水足跡研究," 成功大學機械工程學系學位論文, pp. 1-106, 2014.
[33] J. Semmens, B. Bras, and T. Guldberg, "Vehicle manufacturing water use and consumption: an analysis based on data in automotive manufacturers’ sustainability reports," The International Journal of Life Cycle Assessment, vol. 19, pp. 246-256, 2014.
[34] J. Ogaldez, A. Barker, F. Zhao, and J. W. Sutherland, "Water footprint quantification of machining processes," in Leveraging Technology for a Sustainable World, ed: Springer, 2012, pp. 461-466.
[35] F. Zhao, J. Ogaldez, and J. W. Sutherland, "Quantifying the water inventory of machining processes," Cirp Annals-Manufacturing Technology, vol. 61, pp. 67-70, 2012.
[36] J. Macknick, R. Newmark, G. Heath, and K. Hallett, "A review of operational water consumption and withdrawal factors for electricity generating technologies," Contract, vol. 303, pp. 275-3000, 2011.
[37] S. Pfister, A. Koehler, and S. Hellweg, "Assessing the environmental impacts of freshwater consumption in LCA," Environmental science & technology, vol. 43, pp. 4098-4104, 2009.
[38] T. Lévová and M. Z. Hauschild, "Assessing the impacts of industrial water use in life cycle assessment," CIRP Annals-Manufacturing Technology, vol. 60, pp. 29-32, 2011.
[39] D. S. S. Corp., "Solidworks Sustainability 報告."
[40] 温奕興, "計算產品碳足跡時選取盤查資料之方法研究與簡易計算工具開發," 成功大學機械工程學系學位論文, pp. 1-84, 2011.
[41] H. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, "IPCC guidelines for national greenhouse gas inventories," Institute for Global Environmental Strategies, Hayama, Japan, 2006.
[42] 盧怡靜, 呂穎彬, "ISO 14040生命週期評估的下一步," 永續產業發展季刊66期, pp. 29-35, 2014.
[43] 吳伋, "產品碳足跡計算之發展," 永續產業發展季刊66期, pp. 45-51, 2014.
[44] E. Sanhueza, "Potential emissions of Kyoto and non-Kyoto climate active compounds in the production of sugarcane ethanol," Interciencia: Revista de ciencia y tecnología de América, vol. 34, pp. 8-16, 2009.
[45] A. Y. Hoekstra, "Virtual water trade: Proceedings of the International Expert Meeting on Virtual Water Trade, Delft, The Netherlands, 12-13 December 2002, Value of Water Research Report Series No. 12," Value of Water Research Report Series, vol. 12, 2003.
[46] Hydormax. HGP-1A幫浦型錄. http://hydromax.com.tw/
[47] 曾昱泰, "線性滑軌之生命週期評估," 成功大學機械工程學系學位論文, 2015.
[48] 台灣電力公司網站. (2015). 資訊揭露.
http://www.taipower.com.tw/content/new_info/new_info01.aspx
[49] 黃秉鈞, "台灣如何利用太陽能發電," 科學人月刊第72期2月號, 2008.
[50] 三菱綜合材料網站. 工件材料辭典.
http://www.mitsubishicarbide.net/contents/mmsc/zh/manual/material_cross_reference.pdf
[51] EcoInvent官方網站. http://www.ecoinvent.ch/