| 研究生: |
楊子萱 Yang, Zih-Syuan |
|---|---|
| 論文名稱: |
廣義惠更斯源於寬頻電漿子光學元件之開發與應用 Generalized Huygens' source for broadband plasmonic components |
| 指導教授: |
吳品頡
Wu, Pin-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 電漿子超穎介面 、廣義惠更斯源 、混合模態 、光束偏轉器 、結構交錯式超穎介面 、偏振調控超穎全像 |
| 外文關鍵詞: | Plasmonic metasurface, Generalized Huygens' source, Plasmonic hybridization, Interleaved metasurface, Full-polarized meta-hologram |
| 相關次數: | 點閱:116 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電漿子超穎介面具有利用簡單的製程即可達成在次波長尺度下調控光特性的優勢。然而,光與金屬結構交互作用後易產生熱損耗,這使得電漿子超穎介面在高效率穿透式元件的應用上受到了極大的限制。此外,由於大多數的共振模態只能在特定波長下被激發,因此也造成了電漿子超穎介面頻寬窄的缺點。為了克服電漿子超穎介面低效率與窄頻的問題,本研究藉由將廣義惠更斯源的概念引入巴比涅形式的混合式雙層共振器以提高電漿子超穎介面的效率,並且利用如同光柵的多重耦合共振器結構引發混合模態生成,實現於近紅外波段下寬頻高效率的電漿子超穎介面,其中的光束偏轉器應用在模擬的效率與頻寬分別達到32.6%與30.8%,大大突破了已發表文獻中電漿子超穎介面的效能。另外,我們也將混合式雙層結構的設計延伸至可見光波段應用,配合結構交錯式超穎介面的方法達到可見光下寬頻之超穎全像,並且藉由幾何相位法進一步調控全像影像之偏振,實現全彩之偏振調控超穎全像的應用。我們的研究利用簡單的製程步驟即可獲得寬頻高效率之穿透式電漿子超穎元件,為先進光電設備與微型元件的開發提供了良好的發展平台。
Plasmonic metasurfaces are capable of manipulating the light properties at sub-wavelength scale with the advantage of easy fabrication. However, metallic nanostructures severely suffer from the intrinsic optical loss that highly limits the application of plasmonic metasurfaces in transmission. In addition, the resonant modes can usually be excited at certain frequencies, which brings about the narrow working bandwidth. In this work, we incorporate the concept of generalized Huygens' source and plasmonic hybridization with hybrid bilayer multi-resonators to realize highly-transmissive broadband plasmonic metasurfaces in the near-infrared range. The developed beam deflector achieves anomalous refraction with 32.6% optical efficiency and a 30.8% bandwidth of the central wavelength in simulation, which is a state-of-the-art performance in the community to the best of our knowledge. Moreover, based on an interleaved metasurface, we accomplish a broadband meta-hologram with full-polarization channels in visible window via geometric-phase hybrid bilayer single-resonators. Our work features a simple fabrication process to achieve high-performance broadband metasurfaces in transmission, which can be promisingly extended to the development of low-profile optical components and integrated optoelectronic devices.
[1] V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi 10, 509-514 (1968).
[2] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[3] K. Modi, P. Kachhadiya, J. Rathod, P. Panchal, and K. Parikh, "Low-cost metamaterial loaded microstrip antenna for defense applications," Open Journal of Antennas and Propagation 9, 1-10 (2021).
[4] M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, "Polarization-insensitive metalenses at visible wavelengths," Nano Letters 16, 7229-7234 (2016).
[5] Y. Deng, C. Wu, C. Meng, S. I. Bozhevolnyi, and F. Ding, "Functional metasurface quarter-wave plates for simultaneous polarization conversion and beam steering," ACS Nano 15, 18532-18540 (2021).
[6] F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, "Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach," ACS Nano 9, 4111-4119 (2015).
[7] Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, "Aluminum plasmonic multicolor meta-hologram," Nano Letters 15, 3122-3127 (2015).
[8] F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, "Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges," Applied Physics Letters 105, 101905 (2014).
[9] M. L. Tseng, Y. Jahani, A. Leitis, and H. Altug, "Dielectric metasurfaces enabling advanced optical biosensors," ACS Photonics 8, 47-60 (2021).
[10] C. Zhou, W.-B. Lee, C.-S. Park, S. Gao, D.-Y. Choi, and S.-S. Lee, "Multifunctional beam manipulation at telecommunication wavelengths enabled by an all-dielectric metasurface doublet," Advanced Optical Materials 8, 2000645 (2020).
[11] J. Wang, and J. Du, "Plasmonic and dielectric metasurfaces: design, fabrication and applications," Applied Sciences 6 (2016).
[12] K. M. Mayer, and J. H. Hafner, "Localized surface plasmon resonance sensors," Chemical Reviews 111, 3828-3857 (2011).
[13] Y. Kivshar, and A. Miroshnichenko, "Meta-optics with Mie resonances," Optics and Photonics News 28, 24-31 (2017).
[14] S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano Letters 12, 6223-6229 (2012).
[15] J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, "Plasmonic metasurfaces for coloration of plastic consumer products," Nano Letters 14, 4499-4504 (2014).
[16] T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, "Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle," Nature Communications 2, 333 (2011).
[17] Z. Hu, T. Ma, and S. Hayase, "Interparticle coupling effect of silver-gold heterodimer to enhance light harvesting in ultrathin perovskite solar cell," Journal of Photonics for Energy 8, 015502 (2018).
[18] Y. Z. Ho, W. T. Chen, Y.-W. Huang, P. C. Wu, M. L. Tseng, Y. T. Wang, Y.-F. Chau, and D. P. Tsai, "Tunable plasmonic resonance arising from broken-symmetric silver nanobeads with dielectric cores," Journal of Optics 14, 114010 (2012).
[19] A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, "High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures," Nano Letters 11, 1323-1330 (2011).
[20] L. Zhang, T. Koschny, and C. M. Soukoulis, "Creating double negative index materials using the Babinet principle with one metasurface," Physical Review B 87, 045101 (2013).
[21] J. C. Morrison, Modern physics for scientists and engineers (Academic Press, 2010).
[22] C. Pfeiffer, and A. Grbic, "Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets," Physical Review Letters 110, 197401 (2013).
[23] M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, "High-efficiency dielectric Huygens’ surfaces," Advanced Optical Materials 3, 813-820 (2015).
[24] M. Kerker, D. S. Wang, and C. L. Giles, "Electromagnetic scattering by magnetic spheres," Journal of the Optical Society of America 73, 765-767 (1983).
[25] A. Pors, S. K. H. Andersen, and S. I. Bozhevolnyi, "Unidirectional scattering by nanoparticles near substrates: generalized Kerker conditions," Optics Express 23, 28808-28828 (2015).
[26] W. Liu, and Y. S. Kivshar, "Generalized Kerker effects in nanophotonics and meta-optics," Optics Express 26, 13085-13105 (2018).
[27] A. Hassanfiroozi, Y.-C. Cheng, S.-H. Huang, Y.-T. Lin, P.-S. Huang, Y. Shi, and P. C. Wu, "Toroidal-assisted generalized Huygens’ sources for highly transmissive plasmonic metasurfaces," Laser & Photonics Reviews 16, 2100525 (2022).
[28] https://www.microresist.de/en/produkt/ma-n-2400-series/.
[29] H. Xiao, Introduction to Semiconductor Manufacturing Technology (SPIE, 2012).
[30] S. Ahmadi, N. Asim, M. A. Alghoul, F. Y. Hammadi, K. Saeedfar, N. A. Ludin, S. H. Zaidi, and K. Sopian, "The role of physical techniques on the preparation of photoanodes for dye sensitized solar cells," International Journal of Photoenergy 2014, 198734 (2014).
[31] https://www.nktphotonics.com/products/supercontinuum-white-light-lasers/superk-fianium/.
[32] https://www.hamamatsu.com/us/en/product/cameras/ingaas-cameras/C14041-10U.html.
[33] https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3341&pn.
[34] https://www.pco.de/scientific-cameras/pcopanda-42/.
[35] J. Zhang, M. ElKabbash, R. Wei, S. C. Singh, B. Lam, and C. Guo, "Plasmonic metasurfaces with 42.3% transmission efficiency in the visible," Light: Science & Applications 8, 53 (2019).
[36] A. Hassanfiroozi, P.-S. Huang, S.-H. Huang, K.-I. Lin, Y.-T. Lin, C.-F. Chien, Y. Shi, W.-J. Lee, and P. C. Wu, "A toroidal-Fano-resonant metasurface with optimal cross-polarization efficiency and switchable nonlinearity in the near-infrared," Advanced Optical Materials 9, 2101007 (2021).
[37] X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, "Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency," Advanced Materials 27, 1195-1200 (2015).
[38] L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, "Dispersionless phase discontinuities for controlling light propagation," Nano Letters 12, 5750-5755 (2012).
[39] A. Shaltout, J. Liu, A. Kildishev, and V. Shalaev, "Photonic spin Hall effect in gap-plasmon metasurfaces for on-chip chiroptical spectroscopy," Optica 2, 860-863 (2015).
[40] Z. Liu, Z. Li, Z. Liu, J. Li, H. Cheng, P. Yu, W. Liu, C. Tang, C. Gu, J. Li, S. Chen, and J. Tian, "High-performance broadband circularly polarized beam deflector by mirror effect of multinanorod metasurfaces," Advanced Functional Materials 25, 5428-5434 (2015).
[41] M. Yannai, E. Maguid, A. Faerman, Q. Li, J.-H. Song, V. Kleiner, M. L. Brongersma, and E. Hasman, "Order and disorder embedded in a spectrally interleaved metasurface," ACS Photonics 5, 4764-4768 (2018).
[42] Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, "Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface," Nano Letters 20, 994-1002 (2020).
[43] Q. Song, A. Baroni, R. Sawant, P. Ni, V. Brandli, S. Chenot, S. Vézian, B. Damilano, P. de Mierry, S. Khadir, P. Ferrand, and P. Genevet, "Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces," Nature Communications 11, 2651 (2020).
[44] X. Guo, J. Zhong, B. Li, S. Qi, Y. Li, P. Li, D. Wen, S. Liu, B. Wei, and J. Zhao, "Full-color holographic display and encryption with full-polarization degree of freedom," Advanced Materials 34, 2103192 (2022).