簡易檢索 / 詳目顯示

研究生: 曾堯麟
Tseng, Yau-Lin
論文名稱: 介白質-6/訊號傳導與轉錄激活因子3與 生長調節基因-α訊號路徑在人類胸腺及胸腺癌 的臨床意義
Implications of Interleukin-6/ Signal Transducers and Activator of Transcription 3 and Growth Related Oncogene-α Signaling Pathway in Human Thymus and Thymic Carcinoma
指導教授: 林秋烽
Lin, Chiou-Feng
吳明和
Wu, Ming-Ho
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 81
中文關鍵詞: 胸腺表皮細胞胸腺瘤介白質-6訊號傳導與轉錄激活因子3生長調節基因-α
外文關鍵詞: Thymic epithelial cell, Thymoma, GRO-α, IL-6, STAT3
相關次數: 點閱:72下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胸腺位於胸部的前縱膈腔,是身體中細胞免疫體系最重要的來源。胸腺中的胸腺表皮細胞不僅與胸腺的發育及T淋巴球的形成有關,異常功能及生長將引發重症肌無力及胸腺腫瘤的形成。胸腺本身可生成及分泌很多細胞激素,而胸腺表皮細胞是這些激素分泌的主要來源。這些激素不僅對於附近的細胞有paracrine的作用,有些更對分泌細胞本身有autocrine的作用。在本研究中,我們探索胸腺表皮細胞分泌的激素及其下游產物訊號傳導與轉錄激活因子3 (STAT3) 在正常胸腺及胸腺表皮細胞瘤中的角色。
    我們首先利用臨床資料及病理結果探討胸腺癌的手術成果及預後因子,結果顯示胸腺癌病患的預後不佳,而患有無法完全切除或侵犯縱膈腔大血管的胸腺癌的病患預後最差;進一步我們研究在多種癌症被證實是致癌因子的蛋白質STAT3 在胸腺的成長及胸腺瘤的臨床表現所扮演的角色,我們首次證實STAT3可以在胸腺及胸腺瘤表現,而STAT3在胸腺表皮細胞的持續表現與胸腺組織的維持及重症肌無力的存在有顯著的相關性,表現STAT3的胸腺瘤 (type C除外)有較低的侵襲性及較高的可切除性,而表現STAT3的胸腺癌(type C胸腺瘤)卻有較高的侵襲性與較低的可切除性,顯示STAT3在兩者之訊息傳遞途徑不同。為瞭解那些激素參與其中的變化,我們利用胸腺及胸腺瘤的組織進行體外胸腺表皮細胞的培養,同時以human cytokine antibody array證實IL-6, IL-8, MCP-1 (Monocyte chemoattractive protein-1), GRO (growth related oncogene) 與GRO-α是胸腺表皮細胞在體外培養狀況下分泌較多的激素。接著利用西方墨點法證實IL-6/STAT3訊息傳遞的確存在於正常胸腺表皮細胞。我們首次發現人類胸腺表皮細胞可分泌GRO-α,也發現在無血清培養下IL-6 及GRO-α在胸腺表皮細胞有autocrine的現象,並發現IL-6的分泌早於GRO-α的表現,於是進一步研究IL-6/Jak-2訊息傳遞與GRO-α分泌的相關性,利用anti-IL-6 抗體及Jak-2 抑制劑,我們證實GRO-α的分泌可以被IL-6/Jak-2這訊息傳遞所調控。GRO-α在文獻上被認為是很多癌症中具有致癌因子特性的趨化激素,在胸腺中的角色尚未被報導,為進一步釐清GRO-α在胸腺瘤中的角色,我們利用胸腺及胸腺瘤組織蠟塊經免疫組織染色研究發現,在正常胸腺組織之表皮細胞並無GRO-α的表現,而在胸腺瘤的表皮細胞中,隨著組織型態的惡性度越高GRO-α的表現越顯著,暗示GRO-α在胸腺表皮細胞癌化的過程可能扮演重要的角色。
    本研究的重要性在於可以瞭解GRO-α與IL-6/STAT3對於胸腺及胸腺瘤生成及預後的影響,以做為未來研究免疫系統及胸腺瘤治療的基礎。

    Thymus is the most important organ for cellular immunity. Thymic epithelial cells (TECs) maintain the thymic architecture and associate with T-cell development, myasthenia gravis and formation of thymic epithelial tumors. A lot of cytokines could be secreted in the thymus and TECs are the main producers. These cytokines could have paracrine and autocrine effects to the surrounding cells or the secreted cells themselves. In this study, we investigated the relationships between cytokines and their general downstream transcription factors signal transducers and activator of transcription 3 (STAT3) in thymus and patients with thymoma and thymic carcinoma.
    First, we investigated the surgical results and prognostic factors of thymic carcinoma from clinicopathological parameters. Results showed patients with thymic carcinoma had poor prognosis. Unable to complete resection of the tumor and invasion of the great vessels in the mediastinum are the indicators of poor prognosis. We further investigated that the roles of STAT3, an oncogene in several cancers, in thymus and thymic epithelial tumors. Our data provide the first evidence that constitutive STAT3 activation is seen in both benign and neoplastic thymic tissue and is associated with the persistence of thymic tissue and the presence of myasthenia gravis. Thymoma (exclude type C thymoma) with activated STAT3 tended to have less aggressive behavior. In contrast, thymic carcinoma (type C thymoma) with STAT3 expression had higher rates of unresectability and vascular invasion. It is likely STAT3 to be induced by different factors in thymoma and thymic carcinoma. To identify the involvement of cytokines, we made an in vitro system for primary culture of TECs. By using human cytokine antibody array to detect the main cytokines secreted from primary thymic epithelial cells culture of normal thymus and thymic epithelial tumors, we further documented that IL-6, IL-8, MCP-1, GRO (growth related oncogene), and GRO-α were the main cytokines produced by TECs in vitro. The IL-6/STAT3 signaling pathway in the normal TECs was documented by Western blotting. We also provided the first evidence that GRO and GRO-α could be secreted by TECs. With or without serum supplement in vitro, both IL-6 and GRO-α autocrine in TECs were found. We further investigated the inter-regulation between IL-6/Janus kinase 2 (Jak2) and GRO-α. Neutralizing IL-6 significantly reduced GRO-α production. Inhibiting Jak2 spontaneously blocked GRO-α production with or without IL-6 stimulation. We conclude that human thymic epithelial cells produce GRO-α and that its expression is regulated primarily by IL-6/Jak2 signaling. The roles of GRO-α, an oncogene in several cancers, in thymic epithelial tumors are further investigating. Immunohistochemical staining from paraffin block showed TECs in the normal thymus did not expressed GRO-α. In thymoma, the expression of GRO-α is in TECs and is more frequently expressed in the tumors with histologically high grade malignancy (such as type B3 and type C thymoma). These data implicate GRO-α may play a role in the tumorigenesis of thymic epithelial tumors.
    The importance of this study is that we provide evidence to understand the influence of GRO-α and IL-6/STAT3 in the thymus development and tumorigenesis and prognosis of thymic epithelial tumors. These results could be as a basis for further study of the cellular immunity and therapy for thymic epithelial tumors.

    1. 中文摘要 1 2. 英文摘要 3 3. 誌謝 5 4. 目錄 6 5. 表目錄 7 6. 圖目錄 8 7. 主文 9 研究背景 9 研究目的 14 研究方法及材料 15 研究結果 22 討論與本研究的重要性 26 結論 33 8. 參考文獻 34 9. 附錄 50 10. 個人簡歷及博士班期間論文發表 70

    1. van Ewijk W. T-cell differentiation is influenced by thymic microenvironments. Annual review of immunology 1991;9:591-615.
    2. Anderson G, Moore NC, Owen JJ, Jenkinson EJ. Cellular interactions in thymocyte development. Annual review of immunology 1996;14:73-99.
    3. Anderson G, Lane PJ, Jenkinson EJ. Generating intrathymic microenvironments to establish T-cell tolerance. Nature reviews 2007;7(12):954-63.
    4. Haynes BF, Markert ML, Sempowski GD, Patel DD, Hale LP. The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annual review of immunology 2000;18:529-60.
    5. Taub DD, Longo DL. Insights into thymic aging and regeneration. Immunological reviews 2005;205:72-93.
    6. Zhao Y, Swenson K, Sergio JJ, Arn JS, Sachs DH, Sykes M. Skin graft tolerance across a discordant xenogeneic barrier. Nature medicine 1996;2(11):1211-6.
    7. Zhao Y, Rodriguez-Barbosa JI, Swenson K, Barth RN, Shimizu A, Arn JS, Sachs DH, Sykes M. The induction of specific pig skin graft tolerance by grafting with neonatal pig thymus in thymectomized mice. Transplantation 2000;69(7):1447-51.
    8. Khan A, Sergio JJ, Zhao Y, Pearson DA, Sachs DH, Sykes M. Discordant xenogeneic neonatal thymic transplantation can induce donor-specific tolerance. Transplantation 1997;63(1):124-31.
    9. Anderson G, Jenkinson EJ, Moore NC, Owen JJ. MHC class II-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. Nature 1993;362(6415):70-3.
    10. Nobori S, Samelson-Jones E, Shimizu A, et al. Long-term acceptance of fully allogeneic cardiac grafts by cotransplantation of vascularized thymus in miniature swine. Transplantation 2006;81(1):26-35.
    11. Deng S, Moore DJ, Huang X, et al. Antibody-induced transplantation tolerance that is dependent on thymus-derived regulatory T cells. J Immunol 2006;176(5):2799-807.
    12. Yamamoto S, Teranishi K, Kamano C, et al. Role of the thymus in transplantation tolerance in miniature swine: V. Deficiency of the graft-to-thymus pathway of tolerance induction in recipients of cardiac transplants. Transplantation 2006;81(4):607-13.
    13. Hertz MI, Aurora P, Christie JD, et al. Registry of the International Society for Heart and Lung Transplantation: a quarter century of thoracic transplantation. J Heart Lung Transplant 2008;27(9):937-42.
    14. Lama VN. Update in lung transplantation 2008. American journal of respiratory and critical care medicine 2009;179(9):759-64.
    15. Grossman EJ, Shilling RA. Bronchiolitis obliterans in lung transplantation: the good, the bad, and the future. Transl Res 2009;153(4):153-65.
    16. Belperio JA, Weigt SS, Fishbein MC, Lynch JP, 3rd. Chronic lung allograft rejection: mechanisms and therapy. Proceedings of the American Thoracic Society 2009;6(1):108-21.
    17. Bachmann K, Burkhardt D, Schreiter I, et al. Thymectomy is more effective than conservative treatment for myasthenia gravis regarding outcome and clinical improvement. Surgery 2009;145(4):392-8.
    18. Raica M, Cimpean AM, Ribatti D. Myasthenia gravis and the thymus gland. A historical review. Clinical and experimental medicine 2008;8(2):61-4.
    19. Inoue M, Fujii Y, Okumura M, Takeuchi Y, Shiono H, Miyoshi S, Matsuda H, Shirakura R. Neoplastic thymic epithelial cells of human thymoma support T cell development from CD4-CD8- cells to CD4+CD8+ cells in vitro. Clinical and experimental immunology 1998;112(3):419-26.
    20. Cohen-Kaminsky S, Devergne O, Delattre RM, Klingel-Schmitt I, Emilie D, Galanaud P, Berrih-Aknin S. Interleukin-6 overproduction by cultured thymic epithelial cells from patients with myasthenia gravis is potentially involved in thymic hyperplasia. European cytokine network 1993;4(2):121-32.
    21. Nagvekar N, Moody AM, Moss P, et al. A pathogenetic role for the thymoma in myasthenia gravis. Autosensitization of IL-4- producing T cell clones recognizing extracellular acetylcholine receptor epitopes presented by minority class II isotypes. The Journal of clinical investigation 1998;101(10):2268-77.
    22. Hoffacker V, Schultz A, Tiesinga JJ, et al. Thymomas alter the T-cell subset composition in the blood: a potential mechanism for thymoma-associated autoimmune disease. Blood 2000;96(12):3872-9.
    23. Buckley C, Douek D, Newsom-Davis J, Vincent A, Willcox N. Mature, long-lived CD4+ and CD8+ T cells are generated by the thymoma in myasthenia gravis. Annals of neurology 2001;50(1):64-72.
    24. Bell J. Tumors of the thymus in myasthenia gravis. J Nerv Ment Dis 1917;45:130-43.
    25. Rosai J. Atalas of tumor pathology. Washington: Armed forces institute of pathology, 1976.
    26. Bernatz PE, Harrison EG, Clagett OT. Thymoma: a clinicopathologic study. The Journal of thoracic and cardiovascular surgery 1961;42:424-44.
    27. Marino M, Muller-Hermelink HK. Thymoma and thymic carcinoma. Relation of thymoma epithelial cells to the cortical and medullary differentiation of thymus. Virchows Archiv 1985;407(2):119-49.
    28. Muller-Hermelink HK, Engel P, Harris N. Tumors of the thymus: in Travis W BE, Muller-Hermelink H, et al, (eds). Tumours of the lung, thymus, and heart Pathology and Genetics Lyon, IARC press, 2004:145-247.
    29. Tseng YL, Wang ST, Wu MH, Lin MY, Lai WW, Cheng FF. Thymic carcinoma: involvement of great vessels indicates poor prognosis. The Annals of thoracic surgery 2003;76(4):1041-5.
    30. Chung DA. Thymic carcinoma--analysis of nineteen clinicopathological studies. The Thoracic and cardiovascular surgeon 2000;48(2):114-9.
    31. Eng TY, Fuller CD, Jagirdar J, Bains Y, Thomas CR, Jr. Thymic carcinoma: state of the art review. International journal of radiation oncology, biology, physics 2004;59(3):654-64.
    32. Klug DB, Carter C, Crouch E, Roop D, Conti CJ, Richie ER. Interdependence of cortical thymic epithelial cell differentiation and T-lineage commitment. Proceedings of the National Academy of Sciences of the United States of America 1998;95(20):11822-7.
    33. Anderson G, Owen JJ, Moore NC, Jenkinson EJ. Thymic epithelial cells provide unique signals for positive selection of CD4+CD8+ thymocytes in vitro. The Journal of experimental medicine 1994;179(6):2027-31.
    34. Ritter MA, Boyd RL. Development in the thymus: it takes two to tango. Immunology today 1993;14(9):462-9.
    35. Bromberg J. Stat proteins and oncogenesis. The Journal of clinical investigation 2002;109(9):1139-42.
    36. Bromberg J, Darnell JE, Jr. The role of STATs in transcriptional control and their impact on cellular function. Oncogene 2000;19(21):2468-73.
    37. Calo V, Migliavacca M, Bazan V, Macaluso M, Buscemi M, Gebbia N, Russo A. STAT proteins: from normal control of cellular events to tumorigenesis. Journal of cellular physiology 2003;197(2):157-68.
    38. Nishio H, Matsui K, Tsuji H, Tamura A, Suzuki K. Expression of the janus kinases-signal transducers and activators of transcription pathway in Hassall's corpuscles of the human thymus. Histochemistry and cell biology 2000;113(6):427-31.
    39. Sano S, Takahama Y, Sugawara T, et al. Stat3 in thymic epithelial cells is essential for postnatal maintenance of thymic architecture and thymocyte survival. Immunity 2001;15(2):261-73.
    40. Shen Y, Schlessinger K, Zhu X, Meffre E, Quimby F, Levy DE, Darnell JE, Jr. Essential role of STAT3 in postnatal survival and growth revealed by mice lacking STAT3 serine 727 phosphorylation. Molecular and cellular biology 2004;24(1):407-19.
    41. Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. The Biochemical journal 1998;334 ( Pt 2):297-314.
    42. Kamimura D, Ishihara K, Hirano T. IL-6 signal transduction and its physiological roles: the signal orchestration model. Reviews of physiology, biochemistry and pharmacology 2003;149:1-38.
    43. Hager K, Machein U, Krieger S, Platt D, Seefried G, Bauer J. Interleukin-6 and selected plasma proteins in healthy persons of different ages. Neurobiology of aging 1994;15(6):771-2.
    44. Maggio M, Guralnik JM, Longo DL, Ferrucci L. Interleukin-6 in aging and chronic disease: a magnificent pathway. The journals of gerontology 2006;61(6):575-84.
    45. Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer 2005;41(16):2502-12.
    46. Sempowski GD, Hale LP, Sundy JS, Massey JM, Koup RA, Douek DC, Patel DD, Haynes BF. Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J Immunol 2000;164(4):2180-7.
    47. Yarilin AA, Belyakov IM. Cytokines in the thymus: production and biological effects. Current medicinal chemistry 2004;11(4):447-64.
    48. Le PT, Lazorick S, Whichard LP, Yang YC, Clark SC, Haynes BF, Singer KH. Human thymic epithelial cells produce IL-6, granulocyte-monocyte-CSF, and leukemia inhibitory factor. J Immunol 1990;145(10):3310-5.
    49. Le PT, Lazorick S, Whichard LP, Haynes BF, Singer KH. Regulation of cytokine production in the human thymus: epidermal growth factor and transforming growth factor alpha regulate mRNA levels of interleukin 1 alpha (IL-1 alpha), IL-1 beta, and IL-6 in human thymic epithelial cells at a post-transcriptional level. The Journal of experimental medicine 1991;174(5):1147-57.
    50. Galy AH, Dinarello CA, Kupper TS, Kameda A, Hadden JW. Effects of cytokines on human thymic epithelial cells in culture. II. Recombinant IL 1 stimulates thymic epithelial cells to produce IL6 and GM-CSF. Cellular immunology 1990;129(1):161-75.
    51. Colic M, Pejnovic N, Kataranovski M, Stojanovic N, Terzic T, Dujic A. Rat thymic epithelial cells in culture constitutively secrete IL-1 and IL-6. International immunology 1991;3(11):1165-74.
    52. Colic M, Pejnovic N, Kataranovski M, Popovic L, Gassic S, Dujic A. Interferon gamma alters the phenotype of rat thymic epithelial cells in culture and increases interleukin-6 production. Developmental immunology 1992;2(2):151-60.
    53. Papiernik M, Herbelin A, Schneider E, Dy M. Characterization of thymic cell subpopulations involved in IL-1- or GM-CSF-induced IL-6 production. European cytokine network 1992;3(2):89-95.
    54. Le PT, Singer KH. Human thymic epithelial cells: adhesion molecules and cytokine production. International journal of clinical & laboratory research 1993;23(2):56-60.
    55. Pedersen H, Andersen A, Ropke C. Human thymic epithelial cells in serum-free culture: changes in cytokine production in primary and successive culture periods. Immunology letters 1994;41(1):43-8.
    56. Fernandez E, Vicente A, Zapata A, Brera B, Lozano JJ, Martinez C, Toribio ML. Establishment and characterization of cloned human thymic epithelial cell lines. Analysis of adhesion molecule expression and cytokine production. Blood 1994;83(11):3245-54.
    57. Schluns KS, Cook JE, Le PT. TGF-beta differentially modulates epidermal growth factor-mediated increases in leukemia-inhibitory factor, IL-6, IL-1 alpha, and IL-1 beta in human thymic epithelial cells. J Immunol 1997;158(6):2704-12.
    58. Meilin A, Shoham J, Schreiber L, Sharabi Y. The role of thymocytes in regulating thymic epithelial cell growth and function. Scandinavian journal of immunology 1995;42(2):185-90.
    59. Meilin A, Sharabi Y, Shoham J. Analysis of thymic stromal cell subpopulations grown in vitro on extracellular matrix in defined medium--V. Proliferation regulating activities in supernatants of human thymic epithelial cell cultures. International journal of immunopharmacology 1997;19(1):39-47.
    60. Scupoli MT, Fiorini E, Marchisio PC, Poffe O, Tagliabue E, Brentegani M, Tridente G, Ramarli D. Lymphoid adhesion promotes human thymic epithelial cell survival via NF-(kappa)B activation. Journal of cell science 2000;113 ( Pt 1):169-77.
    61. Ramarli D, Scupoli MT, Fiorini E, et al. Thymocyte contact or monoclonal antibody-mediated clustering of 3beta1 or 6beta4 integrins activate interleukin-6 (IL-6) transcription factors (NF-kappaB and NF-IL6) and IL-6 production in human thymic epithelial cells. Blood 1998;92(10):3745-55.
    62. Fiorini E, Marchisio PC, Scupoli MT, et al. Adhesion of immature and mature T cells induces in human thymic epithelial cells (TEC) activation of IL-6 gene trascription factors (NF-kappaB and NF-IL6) and IL-6 gene expression: role of alpha3beta1 and alpha6beta4 integrins. Developmental immunology 2000;7(2-4):195-208.
    63. Colombara M, Antonini V, Riviera AP, et al. Constitutive activation of p38 and ERK1/2 MAPKs in epithelial cells of myasthenic thymus leads to IL-6 and RANTES overexpression: effects on survival and migration of peripheral T and B cells. J Immunol 2005;175(10):7021-8.
    64. Mocchegiani E, Giacconi R, Muzzioli M, Gasparini N, Provinciali L, Spazzafumo L, Licastro F. Different age-related effects of thymectomy in myasthenia gravis: role of thymoma, zinc, thymulin, IL-2 and IL-6. Mechanisms of ageing and development 2000;117(1-3):79-91.
    65. Huang H, Patel DD, Manton KG. The immune system in aging: roles of cytokines, T cells and NK cells. Front Biosci 2005;10:192-215.
    66. Haeryfar SM, Berczi I. The thymus and the acute phase response. Cellular and molecular biology (Noisy-le-Grand, France) 2001;47(1):145-56.
    67. Gruver AL, Sempowski GD. Cytokines, leptin, and stress-induced thymic atrophy. Journal of leukocyte biology 2008;84(4):915-23.
    68. Chang KC, Wu MH, Jones D, Chen FF, Tseng YL. Activation of STAT3 in thymic epithelial tumours correlates with tumour type and clinical behaviour. The Journal of pathology 2006;210(2):224-33.
    69. Haskill S, Peace A, Morris J, et al. Identification of three related human GRO genes encoding cytokine functions. Proceedings of the National Academy of Sciences of the United States of America 1990;87(19):7732-6.
    70. Wang D, Yang W, Du J, et al. MGSA/GRO-mediated melanocyte transformation involves induction of Ras expression. Oncogene 2000;19(40):4647-59.
    71. Balentien E, Mufson BE, Shattuck RL, Derynck R, Richmond A. Effects of MGSA/GRO alpha on melanocyte transformation. Oncogene 1991;6(7):1115-24.
    72. Luan J, Shattuck-Brandt R, Haghnegahdar H, et al. Mechanism and biological significance of constitutive expression of MGSA/GRO chemokines in malignant melanoma tumor progression. Journal of leukocyte biology 1997;62(5):588-97.
    73. Haghnegahdar H, Du J, Wang D, et al. The tumorigenic and angiogenic effects of MGSA/GRO proteins in melanoma. Journal of leukocyte biology 2000;67(1):53-62.
    74. Wang B, Hendricks DT, Wamunyokoli F, Parker MI. A growth-related oncogene/CXC chemokine receptor 2 autocrine loop contributes to cellular proliferation in esophageal cancer. Cancer research 2006;66(6):3071-7.
    75. Wen Y, Giardina SF, Hamming D, et al. GROalpha is highly expressed in adenocarcinoma of the colon and down-regulates fibulin-1. Clin Cancer Res 2006;12(20 Pt 1):5951-9.
    76. Li A, Varney ML, Singh RK. Constitutive expression of growth regulated oncogene (gro) in human colon carcinoma cells with different metastatic potential and its role in regulating their metastatic phenotype. Clinical & experimental metastasis 2004;21(7):571-9.
    77. Eck M, Schmausser B, Scheller K, Brandlein S, Muller-Hermelink HK. Pleiotropic effects of CXC chemokines in gastric carcinoma: differences in CXCL8 and CXCL1 expression between diffuse and intestinal types of gastric carcinoma. Clinical and experimental immunology 2003;134(3):508-15.
    78. Li J, Sidell N. Growth-related oncogene produced in human breast cancer cells and regulated by Syk protein-tyrosine kinase. International journal of cancer 2005;117(1):14-20.
    79. Yang G, Rosen DG, Zhang Z, Bast RC, Jr., Mills GB, Colacino JA, Mercado-Uribe I, Liu J. The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America 2006;103(44):16472-7.
    80. Fimmel S, Devermann L, Herrmann A, Zouboulis C. GRO-alpha: a potential marker for cancer and aging silenced by RNA interference. Annals of the New York Academy of Sciences 2007;1119:176-89.
    81. Fu W, Chen W. Roles of chemokines in thymopoiesis: redundancy and regulation. Cellular & molecular immunology 2004;1(4):266-73.
    82. Suzuki G, Sawa H, Kobayashi Y, et al. Pertussis toxin-sensitive signal controls the trafficking of thymocytes across the corticomedullary junction in the thymus. J Immunol 1999;162(10):5981-5.
    83. Wurbel MA, Philippe JM, Nguyen C, et al. The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. European journal of immunology 2000;30(1):262-71.
    84. Liu ZG, Haelens A, Wuyts A, Struyf S, Pang XW, Proost P, Chen WF, van Damme J. Isolation of a lymphocyte chemotactic factor produced by the murine thymic epithelial cell line MTEC1: identification as a 30 kDa glycosylated form of MCP-1. European cytokine network 1996;7(3):381-8.
    85. Lira SA, Zalamea P, Heinrich JN, et al. Expression of the chemokine N51/KC in the thymus and epidermis of transgenic mice results in marked infiltration of a single class of inflammatory cells. The Journal of experimental medicine 1994;180(6):2039-48.
    86. Guo J, Gong S, Xie L. [Types of chemokines expressed by murine dendritic cell line]. Zhonghua yi xue za zhi 2001;81(2):93-6.
    87. Matsumiya T, Imaizumi T, Itaya H, Shibata T, Yoshida H, Sakaki H, Kimura H, Satoh K. Production of growth related oncogene protein-alpha in human umbilical vein endothelial cells stimulated with soluble interleukin-6 receptor-alpha: role of signal transducers, janus kinase 2 and mitogen-activated kinase kinase. Life sciences 2002;70(26):3179-90.
    88. Klein C, Wustefeld T, Assmus U, et al. The IL-6-gp130-STAT3 pathway in hepatocytes triggers liver protection in T cell-mediated liver injury. The Journal of clinical investigation 2005;115(4):860-9.
    89. Hsiao JR, Jin YT, Tsai ST, Shiau AL, Wu CL, Su WC. Constitutive activation of STAT3 and STAT5 is present in the majority of nasopharyngeal carcinoma and correlates with better prognosis. British journal of cancer 2003;89(2):344-9.
    90. Trovato M, Vitarelli E, Grosso M, Alesci S, Benvenga S, Trimarchi F, Barresi G. Immunohistochemical expression of HGF, c-MET and transcription factor STAT3 in colorectal tumors. Eur J Histochem 2004;48(3):291-7.
    91. Chen FF, Yan JJ, Chang KC, Lai WW, Chen RM, Jin YT. Immunohistochemical localization of Mcl-1 and bcl-2 proteins in thymic epithelial tumours. Histopathology 1996;29(6):541-7.
    92. Kondo K, Monden Y. Therapy for thymic epithelial tumors: a clinical study of 1,320 patients from Japan. The Annals of thoracic surgery 2003;76(3):878-84; discussion 84-5.
    93. Weide LG, Ulbright TM, Loehrer PJ, Sr., Williams SD. Thymic carcinoma. A distinct clinical entity responsive to chemotherapy. Cancer 1993;71(4):1219-23.
    94. Koizumi T, Takabayashi Y, Yamagishi S, et al. Chemotherapy for advanced thymic carcinoma: clinical response to cisplatin, doxorubicin, vincristine, and cyclophosphamide (ADOC chemotherapy). American journal of clinical oncology 2002;25(3):266-8.
    95. Wright CD, Choi NC, Wain JC, Mathisen DJ, Lynch TJ, Fidias P. Induction chemoradiotherapy followed by resection for locally advanced Masaoka stage III and IVA thymic tumors. The Annals of thoracic surgery 2008;85(2):385-9.
    96. Hsu CP, Chen CY, Chen CL, Lin CT, Hsu NY, Wang JH, Wang PY. Thymic carcinoma. Ten years' experience in twenty patients. The Journal of thoracic and cardiovascular surgery 1994;107(2):615-20.
    97. Hsu HC, Huang EY, Wang CJ, Sun LM, Chen HC. Postoperative radiotherapy in thymic carcinoma: treatment results and prognostic factors. International journal of radiation oncology, biology, physics 2002;52(3):801-5.
    98. Liu HC, Hsu WH, Chen YJ, Chan YJ, Wu YC, Huang BS, Huang MH. Primary thymic carcinoma. The Annals of thoracic surgery 2002;73(4):1076-81.
    99. Ferone D, van Hagen MP, Kwekkeboom DJ, et al. Somatostatin receptor subtypes in human thymoma and inhibition of cell proliferation by octreotide in vitro. The Journal of clinical endocrinology and metabolism 2000;85(4):1719-26.
    100. Palmieri G, Montella L, Martignetti A, Muto P, Di Vizio D, De Chiara A, Lastoria S. Somatostatin analogs and prednisone in advanced refractory thymic tumors. Cancer 2002;94(5):1414-20.
    101. Pan CC, Chen PC, Chiang H. KIT (CD117) is frequently overexpressed in thymic carcinomas but is absent in thymomas. The Journal of pathology 2004;202(3):375-81.
    102. Nakagawa K, Matsuno Y, Kunitoh H, Maeshima A, Asamura H, Tsuchiya R. Immunohistochemical KIT (CD117) expression in thymic epithelial tumors. Chest 2005;128(1):140-4.
    103. Tsuchida M, Umezu H, Hashimoto T, Shinohara H, Koike T, Hosaka Y, Eimoto T, Hayashi JI. Absence of gene mutations in KIT-positive thymic epithelial tumors. Lung cancer (Amsterdam, Netherlands) 2008;62(3):321-5.
    104. Strobel P, Knop S, Einsele H, Muller-Hermelink HK, Marx A. [Therapy-relevant mutations of receptor tyrosine kinases in malignant thymomas and thymic carcinomas: a therapeutic perspective]. Verhandlungen der Deutschen Gesellschaft fur Pathologie 2007;91:177-86.
    105. Ropke C, Elbroend J. Human thymic epithelial cells in serum-free culture: nature and effects on thymocyte cell lines. Developmental immunology 1992;2(2):111-21.
    106. Inai K, Takagi K, Takimoto N, Okada H, Imamura Y, Ueda T, Naiki H, Noriki S. Multiple inflammatory cytokine-productive ThyL-6 cell line established from a patient with thymic carcinoma. Cancer science 2008;99(9):1778-84.
    107. Ehemann V, Kern MA, Breinig M, et al. Establishment, characterization and drug sensitivity testing in primary cultures of human thymoma and thymic carcinoma. International journal of cancer 2008;122(12):2719-25.
    108. Andersen A, Pedersen H, Bendtzen K, Ropke C. Effects of growth factors on cytokine production in serum-free cultures of human thymic epithelial cells. Scandinavian journal of immunology 1993;38(3):233-8.
    109. Ropke C. Thymic epithelial cell culture. Microscopy research and technique 1997;38(3):276-86.
    110. Christensson B, Biberfeld P, Grafstrom R, Matell G. In vitro culture of human thymic epithelial cells in serum-free media. Apmis 1989;97(10):926-34.
    111. Richmond A. Nf-kappa B, chemokine gene transcription and tumour growth. Nature reviews 2002;2(9):664-74.
    112. Giri D, Ozen M, Ittmann M. Interleukin-6 is an autocrine growth factor in human prostate cancer. The American journal of pathology 2001;159(6):2159-65.
    113. Leu CM, Wong FH, Chang C, Huang SF, Hu CP. Interleukin-6 acts as an antiapoptotic factor in human esophageal carcinoma cells through the activation of both STAT3 and mitogen-activated protein kinase pathways. Oncogene 2003;22(49):7809-18.
    114. Miki S, Iwano M, Miki Y, et al. Interleukin-6 (IL-6) functions as an in vitro autocrine growth factor in renal cell carcinomas. FEBS letters 1989;250(2):607-10.
    115. Eustace D, Han X, Gooding R, Rowbottom A, Riches P, Heyderman E. Interleukin-6 (IL-6) functions as an autocrine growth factor in cervical carcinomas in vitro. Gynecologic oncology 1993;50(1):15-9.
    116. Sriuranpong V, Park JI, Amornphimoltham P, Patel V, Nelkin BD, Gutkind JS. Epidermal growth factor receptor-independent constitutive activation of STAT3 in head and neck squamous cell carcinoma is mediated by the autocrine/paracrine stimulation of the interleukin 6/gp130 cytokine system. Cancer research 2003;63(11):2948-56.
    117. Yeh HH, Lai WW, Chen HH, Liu HS, Su WC. Autocrine IL-6-induced Stat3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion. Oncogene 2006;25(31):4300-9.
    118. Sansone P, Storci G, Tavolari S, et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. The Journal of clinical investigation 2007;117(12):3988-4002.
    119. Gao SP, Mark KG, Leslie K, et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. The Journal of clinical investigation 2007;117(12):3846-56.
    120. Lee H, Herrmann A, Deng JH, et al. Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer cell 2009;15(4):283-93.
    121. Yoshimura A. Signal transduction of inflammatory cytokines and tumor development. Cancer science 2006;97(6):439-47.
    122. Dong G, Loukinova E, Chen Z, Gangi L, Chanturita TI, Liu ET, Van Waes C. Molecular profiling of transformed and metastatic murine squamous carcinoma cells by differential display and cDNA microarray reveals altered expression of multiple genes related to growth, apoptosis, angiogenesis, and the NF-kappaB signal pathway. Cancer research 2001;61(12):4797-808.
    123. Allen C, Duffy S, Teknos T, Islam M, Chen Z, Albert PS, Wolf G, Van Waes C. Nuclear factor-kappaB-related serum factors as longitudinal biomarkers of response and survival in advanced oropharyngeal carcinoma. Clin Cancer Res 2007;13(11):3182-90.

    下載圖示 校內:2010-07-17公開
    校外:2010-07-17公開
    QR CODE