簡易檢索 / 詳目顯示

研究生: 吳孟庭
Wu, Meng-Ting
論文名稱: 水熱法製備銀/氧化鋅丙酮蒸氣感測器
Silver-decorated ZnO Based Acetone Vapor Sensors Fabricated by Hydrothermal Method
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 97
中文關鍵詞: 氧化鋅丙酮感測器水熱法溢流現象
外文關鍵詞: ZnO, acetone vapor sensor, hydrothermal, silver, spill-over
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以柱狀氧化鋅(ZnO NR)元件作為丙酮感測器,旨在探討元件之製備變因對丙酮感測特性之影響,並進一步解析丙酮在元件上之吸附行為。製備元件時,以氧化鋁板為基材,在其上先鍍覆指叉式金電極,接者濺鍍一晶種層,然後採用水熱法成長柱狀氧化鋅,作為感測膜材。為提升元件對丙酮之感測性能,進一步沉積銀粒於ZnO NR上而得Ag/ZnO元件。
    在水熱條件之探討上,分別改變溫度及時間,由實驗結果顯示,以85 ℃ 水熱1小時所製備之T85t1元件,對丙酮具有最大之感測靈敏度(265℃,S=9.49),此係因其柱狀結構擁有最大之感測面積所致。但此元件響應及回復時間長(240 ℃、1000 ppm下,τa = 25.5 min,τb = 100.9 min),為一大缺點。
    為進一步提升感測之靈敏度,並降低響應及回復時間,本研究利用熱蒸鍍將銀粒子沉積於T85t1元件上,探討銀沉積時間其對丙酮感測之影響。由結果可知,銀沉積15秒之T85t1Ag15元件,所得之感測性能為最佳。改變感測溫度在215 ℃ ~315 ℃,濃度200 ppm ~ 1000ppm間,發現240 ℃、1000 ppm下,靈敏度達 216.89,約為T85t1元件之約30倍,且響應與回復時間亦明顯縮短(τa =13.23 min,τb =12.87 min)。此係因銀與氧化鋅之相互作用,銀之電子遷移至氧化鋅上,而增加銀對氧之親和力,因此,能吸附更多氧分子,並溢流至氧化鋅上;另一方面,銀之存在可使氧化鋅之氧空缺增加,進而提高丙酮之吸附與氧化反應。此外,銀之擔載,可使感測溫度下降,且縮短響應、回復時間。
    由穩態感測結果分析顯示,丙酮在Ag/ZnO上之吸附行為可以Langmuir Adsorption模式來加以描述。利用迴歸分析求出不同溫度下之平衡常數,並由van’t Hoff equation求得反應熱、反應熵分別為 -25.03 kJ/mol、-41.90 J/K mol。

    In this study, Ag/ZnO used to detect acetone vapor was synthesized on alumina substrate by low-temperature hydrothermal method and evaporation. As expected, the Ag/ZnO demonstrated dramatic improvements in sensing performances compared with pure ZnO nanorods. For example, the optimal sensing temperature was reduced from 265 ℃ to 240 ℃. The response of Ag/ZnO device to 1000 ppm acetone was 216.89, which was nearly 30 times higher than that of primary ZnO at 240 ℃. Meanwhile, the response and recovery time were also obviously shortening. It was attributed to introduce Ag into ZnO would change the band diagram and the Ag showed positive dipole moment. It caused the more oxygen would be adsorbed and provide more active sites to facilitate the interaction between acetone and Ag/ZnO nanorods through the spillover effect.

    摘要 I Extended Abstract II 誌謝 XII 目錄 XIII 表目錄 XVII 圖目錄 XIX 第一章 緒論 1 1.1 丙酮性質 1 1.2 感測器種類 1 1.3 電阻式金屬氧化物氣體感測器 2 1.4 研究動機與目的 3 第二章 原理 10 2.1 濺鍍(sputter) 10 2.1.1 電漿 (plasma) 10 2.1.2 直流濺鍍 (DC sputter) 10 2.1.3 磁控射頻濺鍍 (RF magnetron sputter) 10 2.2 氧化鋅(Zinc Oxide, ZnO) 11 2.3 水熱法成長一維結構之氧化鋅 12 2.3.1 一維結構材料成長機制 12 2.3.2 低溫水熱法製備氧化鋅結晶 12 2.4 氧空缺 13 2.4.1 生成原理 13 2.4.2 氧空缺之鑑定與分析 14 2.5 丙酮感測機原理 14 2.5.1 丙酮感測機制 15 2.5.2 平衡吸附行為 15 第三章 實驗 24 3.1 藥品與材料 24 3.1.1 藥品 24 3.1.2 材料 24 3.1.3 氣體 24 3.2 實驗設備與分析儀器 24 3.2.1 實驗設備 24 3.2.2 分析儀器 25 3.3 實驗步驟與分析方法 25 3.3.1 實驗步驟 25 3.3.1.1 感測元件製備 26 3.3.1.2 丙酮感測實驗 27 3.3.2 分析方法 28 第四章 氧化鋅奈米柱製備變因對丙酮感測之探討 34 4.1 氧化鋅晶種層 34 4.2 製程溫度之影響 34 4.2.1 水熱溫度對氧化鋅微結構之影響 34 4.2.2 氧化鋅微結構對元件電性之影響 35 4.2.3 氧化鋅微結構對丙酮感測之影響 35 4.2.3.1 穩態量測 36 4.2.3.2 暫態量測 36 4.2.4 結果討論 36 4.3 製程時間之影響 36 4.3.1 水熱時間對氧化鋅微結構之影響 36 4.3.2 氧化鋅微結構對元件電性之影響 37 4.3.3 氧化鋅微結構對丙酮感測之影響 37 4.3.3.1 穩態量測 37 4.3.3.2 暫態量測 37 4.4 結果討論 38 第五章 T85t1元件丙酮氣感測特性之分析 54 5.1 操作溫度對元件電性之影響 54 5.2 穩態量測結果 54 5.2.1 元件感測電性 54 5.2.2 感測靈敏度 54 5.2.3 Langmuir isotherm穩態吸附分析 55 5.3 暫態量測結果 56 5.4 結果討論 56 第六章 銀粒子修飾元件對丙酮感測之探討 66 6.1 銀蒸鍍時間對元件微結構之影響 66 6.2 銀蒸鍍時間對元件丙酮感測之影響 66 6.2.1 元件電性 66 6.2.2 穩態量測 66 6.2.3 暫態量測 67 6.2.4 結果討論 67 6.3 銀修飾元件丙酮感測特性 67 6.3.1 操作溫度對元件電性之影響 67 6.3.2 穩態量測結果 68 6.3.2.1 元件感測電性 68 6.3.2.2 感測靈敏度 68 6.3.2.3 Langmuir isotherm穩態吸附分析 68 6.3.3 暫態量測結果 69 6.4 氣體選擇性 69 6.5 綜合討論 70 第七章 結論與建議 88 參考文獻 91

    [1] F. Garzia, C. A. Brebbia and M. Guarascio (Ed.) “Safety and Security Engineering V”, 1st ed., vol. 134, pp.597-605, WIT Press / Computational Mechanics.
    [2] T. Hübert a, L. Boon-Brett b, G. Black b and U. Banach, “Hydrogen sensors – A review”, Sens. Actu. B, 157, 329-352, 2011
    [3] C. Massie, G. Stewart, G. McGregor and J. R. Gilchrist, ” Design of a portable optical sensor for methane gas detection”, Sens. Actu. B, 113, 830-836, 2006.
    [4] N. M. Triet, L. T. Duy, B. U. Hwang, A. Hanif, S. Siddiqui, K. H. Park, C. Y. Cho and N. E. Lee, “High-Performance Schottky Diode Gas Sensor Based on the Heterojunction of Three-Dimensional Nanohybrids of Reduced Graphene Oxide–Vertical ZnO Nanorods on an AlGaN/GaN Layer”, Appl. Mater. Interfaces, 9, 36, 30722-30732, 2017
    [5] G. Korotcenkov, “Metal oxides for solid-state gas sensors: What determines our choice?”, Mater. Sci. Eng. B, 139, 1-23, 2007
    [6] A. Mirzaei, S.G. Leonardi, G. Neri, “Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review”, Ceram. Int., 42, 15119-15141, 2016
    [7] M. Righettoni, A. Tricoli, and S.E. Pratsinis, “Thermally Stable, Silica-Doped ε-WO3 for Sensing of Acetone in the Human Breath”, Chem. Mater. 22, 3152-3157, 2010
    [8] Y. Zeng, T. Zhang, M. Yuan, M. Kang, G. Lu, R. Wang, H. Fan, Y. He and H. Yang, “Growth and selective acetone detection based on ZnO nanorod arrays”, Sens. Actu. B, 143, 93-98, 2009
    [9] R. G. Biswal,”Pure and Pt-loaded gamma iron oxide as sensor for detection of sub ppm level of acetone”, Sens. Actu. B, 157, 183-188, 2011
    [10] Y. K. Jun, H. S. Kim, J. H. Lee, and S. H. Hong, “High H2 sensing behavior of TiO2 films formed by thermal oxidation”, Sens. Actu. B, 107, 1, 264-270, 2005
    [11] C.C. Wang, S.A. Akbar and M.J. Madou, “Ceramic based resistive sensors”, J. Electroceram., 2, 273-282, 1998
    [12] O. K. Varghese, and C. A. Grimes, “Metal oxide nanostructures as gas sensors”, Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, 5, 505-521, 2004
    [13] Y. Zeng, T. Zhang, M. Yuan, M. Kang, G. Lu, R. Wang, H. Fan, Y. He and H. Yang, “Growth and selective acetone detection based on ZnO nanorod arrays”, Sens. Actu. B, 143, 93-98, 2009
    [14] H. Fan and X. Jia, “Selective detection of acetone and gasoline by temperature modulation in zinc oxide nanosheets sensors”, Solid State Ionics, 192, 688-692, 2011
    [15] X. B. Li, S. Y. Ma, F. M. Li, Y. Chen, Q. Q. Zhang, X. H. Yang, C. Y. Wang and J. Zhu, “Porous spheres-like ZnO nanostructure as sensitive gas sensors for acetone detection”, Mater. Lett. , 100, 119-123, 2013
    [16] R. G. Biswal,”Pure and Pt-loaded gamma iron oxide as sensor for detection of sub ppm level of acetone”, Sen. Act. B 157, 183-18, 2011
    [17] L. Liu, S. Li, J. Zhuang, L. Wang, J. Zhang, H. Li, Z. Liu, Y. Han, X. Jiang and P. Zhang, “Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning”, Sensors and Actuators B 155, 782-788, 2011
    [18] Z. Jiang, R. Zhao, B. Sun, G. Nie, H. Ji, J. Lei, C. Wang, “Highly sensitive acetone sensor based on Eu-doped SnO2 electrospun nanofibers” , Ceramics International 42, 15881-15888, 2016
    [19] S. B. Patil, P. P. Patil, M. A. More, ”Acetone vapour sensing characteristics of cobalt-doped SnO2 thin films” , Sensors and Actuators B 125, 126-130, 2007
    [20] M. Righettoni, A. Tricoli, and S. E. Pratsinis, “Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis”, Analysis Chemical 82, 3581-3587, 2010
    [21] M. Righettoni, A. Tricoli, and S.E. Pratsinis, “Thermally Stable, Silica-Doped ε-WO3 for Sensing of Acetone in the Human Breath”, Chemical of Material 22, 3152-3157, 2010
    [22] T. Xiao, X. Y. Wang, Z. H. Zhao, L. Li, L. Zhang, H. C. Yao, J. S. Wang, Z. J. Li, “Highly sensitive and selective acetone sensor based on C-doped WO3for potential diagnosis of diabetes mellitus”, Sensors and Actuators B 199, 210-219, 2014
    [23] Y. A. Hadeethi, A. Umar, A. A. Ibrahim, S. H. A. Heniti, R. Kumar, S. Baskoutas and B. M. Raffah, “Synthesis characterization and acetone gas sensing applications of Ag-doped ZnO nanoneedled”, Ceram. Int., 43, 6765-6770, 2017
    [24] W. Q. Li, S. Y. Ma, J. Luo, Y. Z. Mao, L. Cheng, D. J. Gengzang, X. L. Xu and S. H. Yan, “Synthesis of hollow SnO2 nanobelts and their application in acetone sensor”, 132, 338-341, 2014
    [25] P. Song, Q. Wang and Z. Yang, “Preparation, characterization and acetone sensing properties of Ce-doped SnO2 hollow spheres”, Sen. Actu. B, 173, 839-846, 2012
    [26] J. Luo, S. Y. Ma, F. M. Li, X. B. Li, W. Q. Li, L. Cheng, Y. Z. Mao and D. J. GZ, “The mesoscopic structure of flower-like ZnO nanorods for acetone detection”, Materials Letters 121, 137-140, 2014
    [27] J. A. Venables, G. D. T. Spiller, M. Hanbucken. “ Nucleation and growth of thin films”, Rep. Prog Phys., 47, 1984, 399-459, 1984
    [28] 郭益男,國立中山大學電機工程學系碩士論文,2004
    [29] Irving Langmuir, “The interaction of electron and positive ion space charges in cathode sheaths”, Phys. Rev., 33, 954-989, 1929
    [30] H. Conrads and M. Schmidt, “Plasma generation and plasma sources”, Plasma Sources Sci. Technol., 9, 441-454, 2000
    [31] R. Kumar, O. Aldossary, G. Kumar, A. Umar, “Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review”, Nano-Micro Lett., 7, 97-120, 2015
    [32] Y. F. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. H., Z. Zhu, T. F. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization”, J. Appl. Phys., 84, 3912, 1998
    [33] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, 292, 1897-1899, 2001
    [34] J. Goldberger, D. J. Sirbuly, M. Law, and P. Yang, ”ZnO Nanowire transistors”, J. Phys Chem. B, 109, 9-14, 2005
    [35] M. Law, L. E. Greene, J C. Johnson, R. Saykally and P. Yang, “Nanowire dye-sensitized solar cell”, Nat. Mater., 4, 455-495, 2005
    [36] H. Kind, H. Yan, B. Messer, M. Law and P. Yang, “Nanowire ultraviolet photodetectors and optical switch”, Adv. Chem., 14, 158-160, 2002
    [37] G. R. Li, T. Hu, G. L. Pan, T. Y. Yan, X. P. Gao and H. Y. Zhu, “Morphology−Function Relationship of ZnO: Polar Planes, Oxygen Vacancies, and Activity”, J. Phys Chem., 112, 11859-11864, 2008
    [38] J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition”, Adv. Mater., 14, 215-218, 2002
    [39] G. X. Wan, S. Y. Ma, X. B. Li, H. Q. Bian, L. P. Zhang, W. Q. Li, “Synthesis and acetone sensing properties of Ce-doped ZnO nanofibers”, Mater.Lett., 114, 103-106, 2014
    [40] M. S. Kim, “ZnO micro/nanocrystal synthesized via a thermal evaporation of Al-Zn mixtures”, J. Ceram Soc. Jpn., 123, 1018-1021, 2015
    [41] S. S. Brenner and G. W. Sears, “Mechanism of whisker growth - Ⅲ nature of growth sites”, Acta Metall., 4, 268-270, 1956
    [42] R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid mechanism of single crystal growth”, Appl. Phys. Lett, 4, 89-90, 1964
    [43] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth”, Science, 270, 1791-1794, 1995
    [44] M. Gudala, “Modelling of methane hydrate formation and dissociation in presence of surfactants by chemical affinity”, Department of Petroleum Engineering, Indian School of Mines, Dhanbad, 2013
    [45] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solution”, Adv. Mater., 15, 464-466, 2003
    [46] M. Yang, G. S. Pang, L. F. Jiang S. H. Feng, “Hydrothermal synthesis of one-dimensional zinc oxides with different precursors”, Nanotechnol.,17, 206-212, 2006
    [47] R. B. Peterson, C. L. Field, B. A. Gregg, “Epitaxial Chemical Deposition of ZnO Nanocolumns from NaOH Solutions”, Langmuir, 20, 5114-5118, 2004
    [48] A. Janotti and C. G. Van de Walle, “Oxygen vacancies in ZnO”, Appl. Phys. Lett., 87, 122101, 2005
    [49] F. P. Koffyberg and F. A. Benko, “A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO”, J. Appl. Phys., 53, 1173-1177, 1982
    [50] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys, 79, 7983-7990, 1996
    [51] A. Gurlo, “Interplay between O2 and SnO2:oxygen ion sorption and spectroscopic evidence for adsorbed oxygen”, ChemPhysChem, 7, 2041-2052, 2006
    [52] N. Barsan and U. Weimar, “Conduction modal of metal oxide gas sensor”, J. Electroceram., 7, 143-167, 2001
    [53] S. Das, S. Majumdar, R. Kumar, S. Ghosh, D. Biswas, “Thermodynamic analysis of acetone sensing in Pd/AlGaN/GaN heterostructure Schottky diodes at low temperatures”, Scr. Mater., 113,39-42, 2016
    [54] 伍維君,國立成功大學化學工程學系碩士論文,2011
    [55] Y. M. Zhang, H. X. Xu, S. T. Dong, R. Q. Han, X. M. Liu, Y. X. Wang, S. Z. Li, Q. H. Bu, X. X. Li, J. Xiang, “A fast response & recovery acetone gas sensor based on BiFeO3 nanomaterials with high sensitivity and low detection limit”, J. Mater. Sci.: Mater. Electron., 29, 2193-2200, 2018
    [56] S. H. Kim, S. G. Park, S. Y. Park and C. G. Lee, “Acetone sensing of Au and Pd-decorated WO3 nanorod sensors”, Sen. Actu. B, 209, 180-185, 2015
    [57] S. Syahirah, S. I. Ahmad, H. M. Mohamad and S. Z. Ahmad, “Influence of Growth Time and Temperature on the Morphology of ZnO nanorods via hydrothermal”, Mater. Sci. Eng., 99, 1-8, 2015
    [58] M. Batzill and U. Diebold, “The surface and materials science of tin oxide”, Prog. Surf. Sci., 79, 47-154, 2005
    [59] Y. Weia , X. D. Wanga, G. Y. Yib, L. X. Zhoua, J. L. Caob, G. Suna, Z. H. Chenb, H. Balaa and Z. Y. Zhang, “Hydrothermal synthesis of Ag modified ZnO nanorods and their enhanced ethanol-sensing properties”, Mater. Sci. Semicond. Process., 75, 327-333, 2018
    [60] R. Rella, J. Spadavecchia, M. G. Manera, S. Capone, A. Taurino, M. Martino, A.P. Caricato and T. Tunno, “Acetone and ethanol solid-state gas sensors based on TiO2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation”, Sen. Actu. B, 127, 426-431, 2007

    下載圖示 校內:2023-08-21公開
    校外:2023-08-21公開
    QR CODE