簡易檢索 / 詳目顯示

研究生: 劉哲豪
Liu, Che-Hao
論文名稱: AZO透明導電薄膜之殘留應力分析
Residual stress analysis on Al doped ZnO thin films prepared by sol-gel method
指導教授: 賴啟銘
Lai, Chi-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 130
中文關鍵詞: 薄膜氧化鋅-鋁殘留應力溶膠凝膠法X光繞射
外文關鍵詞: thin film, AZO, residual stress, sol-gel method, XRD
相關次數: 點閱:140下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜是利用各種沉積方法沉積於基板上,由於各種原因產生殘留應力,造成薄膜剝落。殘留應力對於樣品長期可靠度可視為一項重要的指標性,它對整個沉積過程中與表面完善有很重要關係。因此如何精確來評估殘留應力大小,對元件成品率將是重要依據。
    本研究目標為總結薄膜應力的量測方法。介紹了測量基材曲率變形分析法和X光繞射法量測晶格變形等測量測薄膜應力及其測量原理。目前來說最常使用方法為非破壞性XRD來決定材料殘留應力及應變,且能夠提供較高準確度。
    本文利用溶膠凝膠法製成AZO薄膜,經由各項光學、電性特性檢測,可以發現於濃度0.3M、0.5M於各方面表現顯示出薄膜其品質較為良好,而隨著濃度增高為0.75M、1.0M時,薄膜品質逐漸呈現各種缺陷情況,可能導致薄膜局部性破壞造成應力釋放,以致於量測殘留應力隨著濃度增高而降低。

    There are several techniques to deposit thin films to the substrate: magnetron sputtering, pulsed laser deposition, sol-gel, metal organic chemical vapor deposition, etc. Residual stress has become an important issues related with thin film quality. The removal of residual stress related to deposition technique has an important relationship.
    Different kinds of thin film stress measurements are summarized. The principle of thin film stress measurements are discussed, including the laser macroscopic deformation analysis based on measuring the bending curvature of substrate and the X-ray diffraction measurement based on crystal lattice deformation. The X-ray diffraction (XRD) method is a non-destructive method which can accurately measure the stress-strain relationship.
    The sol-gel method was used to deposit the aluminum-zinc oxide (AZO) thin film in this experiment. This experiment also used AZO at various different concentration ranging from 0.3M, 0.5M, 0.75M, 1.0M. Various analysis were applied to AZO thin films to determine their mechanical, optical, and electrical properties. The AZO thin films with concentration 0.3M and 0.5M have better quality. Increasing concentration to 0.75M and 1.0M decreased the film quality because of the localized damage caused by stress release.

    目錄 摘 要 I Abstract II 誌 謝 III 目 錄 IV 表目錄 VII 圖目錄 VIII 第一章緒論 1 1.1前言1 1.2研究動機與目的 3 1.3論文架構 4 第二章基礎理論與實驗方法5 2.1溶膠凝膠合成法5 2.1.1溶膠凝膠水解與聚縮反應7 2.1.2塗布 9 2.2奈米壓痕試驗 10 2.2.1奈米壓痕儀架構 10 2.2.2奈米壓痕鑽石探針之特性 12 2.2.3奈米壓痕基本理論 13 2.3光電特性量測 18 2.3.1分光光譜儀 18 2.3.2四點探針 19 2.4X光繞射儀原理及應用 20 2.4.1X光繞射儀 20 2.4.2基本結晶學 21 2.4.3氧化鋅晶體結構與特性 25 2.4.4倒晶格空間 26 2.4.5X光繞射原理 27 2.4.6布拉格定律與厄瓦特球 29 2.4.7薄膜低掠角繞射 30 第三章薄膜應力量測分析及文獻回顧 32 3.1薄膜內應力理論 32 3.2薄膜應力量測技術 37 3.2.1懸臂梁法 37 3.2.2牛頓環 39 3.2.3X射線繞射法 40 3.2.4XRD量測薄膜殘留應力 41 3.2.5平面應力轉換、莫爾圓分析 47 3.3薄膜應力量測文獻回顧 51 3.3.1量測基板受應力作用彎曲程度 52 3.3.2量測薄膜晶格常數畸變 53 3.3.3文獻總結 54 第四章實驗方法及規劃 56 4.1實驗流程 56 4.2實驗儀器和藥品 57 4.3薄膜製作 58 4.3.1基板清洗 59 4.3.2 AZO溶凝膠製備方法 61 4.4 XRD殘留應力量測規劃 66 4.4.1應力量測流程 66 4.4.2量測設備 68 4.4.3量測規劃 69 第五章實驗結果與討論 70 5.1AZO薄膜之奈米壓痕分析 70 5.2AZO薄膜之光電特性 80 5.2.1AZO薄膜不同濃度下之透光率分析 80 5.2.2AZO薄膜厚度分析 82 5.2.3AZO薄膜不同濃度下之片電阻 84 5.3AZO薄膜之殘留應力 85 5.3.1應用XRD量測薄膜平面應力 85 5.3.2平面應力轉換、莫爾圓分析結果 101 5.3.2運用GIXRD量測薄膜表面應力梯度 106 第六章結論與建議 115 參考文獻 118 附錄A 124 附錄B 130

    參考文獻
    [1]楊明輝,透明導電膜,藝軒圖書出版社(2006)。
    [2]周耿裕,以溶膠凝膠法與紅外線加熱製備氧化鋅薄膜與特性探討,南台科 技大學奈米科技研究所碩士論文(2008)。
    [3]吳坤陽,溶凝膠法製備含銀之AZO透明導電膜的研究,國立成功大學化學工程研究所碩士論文(2005)。
    [4]江松勳, AZO透明導電膜之製備與特性分析,國立成功大學化學工程研究所碩士論文(2006)。
    [5]C.J.Brinker and G.W.Scherer,Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing,Academic Press:San Diego,CA(1990)。
    [6]楊秉豐,奈米薄膜之微觀特性研究,國立成功大學工程科學系博士論文(2008)。
    [7]羅吉宗,薄膜科技與應用,第二版,全華圖書(2009)。
    [8]盧天惠,X光繞射與應用,滄海書局(2002)。
    [9]鄭信民、林麗娟,X光繞射應用簡介,工業材料雜誌材料分析技術專欄 181期(2002)。
    [10]William D. Callister,Materials Science and Engineering: An Introduction。
    [11]JOHN WILEY, SONS,Introduction to solid state physics,INC, 7th edition(1966)。
    [12]張坤榮,摻雜鋁於氧化鋅透明導電膜光特性與電特性研究,國立中央大學光電所碩士論文(2004)。
    [13]馬達榮,奈米科技,商周出版(2002)。
    [14]Welzel, U., J. Ligot, P. Lamparter, A. C. Vermeulen, E. J. Mittemeijer,Stress analysis of polycrystalline thin film and surface regions by X-ray diffraction,Journal of Applie Crystallography,38, 1-29(2004)。
    [15]汪建民,材料分析,中國材料科學學會發行(1998)。
    [16]Milton Ohring,Materials Science of Thin Films, Second Edition(2002)。
    [17]邱柏凱,儀科中心簡訊 77 期(2006)。
    [18]Birkholz, M,Thin Film Analysis by X-Ray Scattering,Wiley(2006)。
    [19]李正中、李坤憲,陰影疊紋法量測軟性基板之薄膜應力,國立中央大學光電科學研究所碩士論文(2006)。
    [20]Kusaka, K., T. Hanabusa, M. Nishida, F. Inoko,Residual stress and in-situ thermal stress measurement of aluminum film deposited on silicon wafer,thin solid film, 248-253(1996)。
    [21]Dr.Kurt Erlacher,Stress Training,BRUKER AXS(2010)。
    [22]Chen C-C. A, W. E. Fu, M. K. Chen,Stuy on Residual Stress of Metal Thin Film on Silicon Wafer with CMP,Avanced Materials Reserch, Vol 32,75-78(2008)。
    [23]G. Gore,On the Properties of Electro-deposited Antimony,Trans. Roy. Soc. (London), Part 1, pp.185(1858)。
    [24]G. G. Stoney,The tension of metallic films deposited by electrolysis ” ,Proc.Roy. Soc., A82, pp.172-175(1909)。
    [25]J. D. Finegan and R. W. Hoffman,Stress anisotropy in evaporated Iron film,J. Appl. Phys., 30, pp.597-598(1959)。
    [26]A.E. Ennos,Stress eveloped in optical film coatings, Appl. Opt, 5, pp.51-61(1966)。
    [27]J. A. Aboaf,Stress in SiO2 film obtained from the thermal decomposition of tetraethylorthosilicate-effect of heat-treament and humidity, J. Electrochem. Soc.: Solid State Science, 116, pp.1732-1736(1969)。
    [28]E. Klokholm,An apparatus for measuring stress in thin film,Rev. Sci. Instrum.,40, pp.1054-1058(1969)。
    [29]A. K. Sinha, H. J. Levistein, and T. E. Smith,Thermal stresses and cracking resistance of ielectric films on Si Substrates, J. Appl. Phys., 49, pp.2423-2426(1978)。
    [30]E. Kobeda and E.A. Irene,A measurement of intrinsic SiO2 film stress resulting from low temperature thermal oxidation of Si,J. Vac. Sci. Technol. B4,pp720-722(1986)。
    [31]L. M. Mack, A. Reisman and P.K. Bhattacharya,Stress measurements of thermally grown thin oxides on (100) Si substrates ,J. Electrochem. Soc., 136, pp.3433-3437(1989)。
    [32]Chuen-Lin Tien, Cheng-Chung Lee and Cheng-Chung Jaing,The measurement of thin film stress using phase shifting interferometry,J. Mod. Opt. 47, 839-849(2000)。
    [33]田春林,光學薄膜應力與熱膨脹係數量測之研究,國立中央大學光電科學研究所博士論文(2000)。
    [34]Kusaka, K., T. Hanabusa, M. Nishida, F. Inoko,Residual stress and in-situ thermal stress measurement of aluminum film deposited on silicon wafer,thin solid film, 248-253(1996)。
    [35]Ma, C. H., J. H. Hung, H. Chen,Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, thin solid film, 418, 73-78(2002)。
    [36]Welzel, U., J. Ligot, P. Lamparter, A. C. Vermeulen, E. J. Mittemeijer,Stress analysis of polycrystalline thin film and surface regions by X-ray diffraction,Journal of Applie Crystallography,38, 1-29(2004)。
    [37]Chen, C-C. A., W. E. Fu, M. K. Chen,Stuy on Residual Stress of Metal Thin Film on Silicon Wafer with CMP,Avanced Materials Reserch, Vol 32, 75-78(2008)。
    [38]陳孟科,應用GIXRD量測薄膜殘留應力與化學機械拋光的影響分析,國立台灣科技大學機械工程系碩士學位論文(2008)。
    [39]J.J. Shyh and K. L. Mo, Jpn. J. Appl. Phys.34(1995)683。
    [40]X. Wang, A. Kolitsch and W. Moller,Roughness lmprovement and Hardness Enhancement in Nanoscale Al/AlN Multilayered Thin Films,Applied Physics Letters Letters,vol.71, no. 14, pp. 1951-1953 (1997)。
    [41]S. G. Corcoran, R. J. Colton, E. T. Lilleodden and W. W. Gerberich,Anomalous plastic deformation at surfaces:Nanoindentation of gold single crystals,Physical Review B, Vol. 55, No. 24, pp. R16057-R16060(1997)。
    [42]J. D. Wilcock,Stress in thin film, ph. D. Dissertation, Electrical Engineering Department, Imperial College, London University, London(1967)。
    [43]E. Bauer, A.K. Green, and K. M. Kunz,The formation of thin continuous films from isolated nuclei,in Basic Problems in Thin Film Physics, edited by R.Niedermager and H. Mayer, Vandenhoeck and Ruprecht:Gottingen, pp. 135-151(1966)。

    下載圖示 校內:2013-07-19公開
    校外:2013-07-19公開
    QR CODE