| 研究生: |
吳秋萍 Wu, Chiou-Ping |
|---|---|
| 論文名稱: |
蝴蝶蘭逆境之生理及分子層次特性分析 The physiological and molecular characterization of Phalaenopsis amabilis under environmental stresses |
| 指導教授: |
黃定鼎
Huang, Dinq-Ding 黃浩仁 Huang, Hao-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 蝴蝶蘭 、環境逆境 |
| 外文關鍵詞: | Phalaenopsis amabilis, environmental stresses |
| 相關次數: | 點閱:118 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
具有抗病性植物遭受植物病原菌感染時會產生抗病反應,例如,氧爆(oxidative burst),它是一種快速產生活性氧化分子 (reactive oxygen species , ROS)的現象。本研究利用活性氧化分子偵測試劑及酵素活性染色方式,觀察蝴蝶蘭(Phalaenopsis amabilis)被軟腐病菌(Erwinia chrysanthemi)感染後其ROS是否會產生,接著其抗氧化酵素活性是否會受影響改變。本實驗發現蝴蝶蘭被軟腐病菌感染3小時後會有大量ROS產生,且在感染過程中抗氧化酵素成員中的超氧化物歧化酵素(superoxide dismutase;SOD)及過氧化氫酶(catalase;CAT)活性受影響,顯示蝴蝶蘭被軟腐病菌感染後會產生大量ROS來參與抗軟腐病;參與木質素合成作為抗病機制的過氧化酶(peroxidase;POX)在蝴蝶蘭被軟腐病菌感染過程中,其活性隨著感染時間的延長逐漸增加。以上結果顯示蝴蝶蘭被軟腐病菌感染時會引發抗病反應及可能誘發木質素合成機制。由NCBI資料庫中搜尋軟腐病菌的harpinEch基因序列,利用PCR技術得到該段基因並利用大腸桿菌表現系統進行蛋白質生產,將GST-HarpinEch蛋白質純化出來並接種在菸草葉子 (Nicotiana tabacum L.cv. Petit Havana)上,可引發菸草產生細胞壞死現象,這與前人文獻研究結果相符,因此證實這個由本實驗選殖出來的harpinEch基因所產生的蛋白質具引發菸草產生超過敏反應之特性。此外,蝴蝶蘭被軟腐病菌感染後會誘導PaCDPK1表現,因此本研究將選殖得到的PaCDPK1啟動子片段構築在含GUS報導基因的表現載體中,再將之轉殖至阿拉伯芥中。含PaCDPK1啟動子片段轉殖植株經GUS組織染色分析,得知PaCDPK1啟動子在物理性傷害和低溫處理(4 ℃)這兩種逆境環境中會被誘發活性產生,且PaCDPK1啟動子在毛狀體(trichome)、花絲、柱頭,及花萼中具組織特異性。此顯示PaCDPK1啟動子配合相關抗逆境因子,未來可供蝴蝶蘭相關產業的利用。
Abstract
The oxidative burst, a rapid production of reactive oxygen species(ROS), is described as one of the earliest responses to pathogen infection in plants. In this study, ROS analysis was carried out by using Reactive Oxygen Species (ROS) detection reagents. The expression of ROS reached maximum in 3 hours and antioxidative enzymes peroxidase increased with time in leaves following infiltration with Erwinia chrysanthemi. These results suggested that the lignification and defense against pathogen infection would occur in soft-rot disease of Phalaenopsis. Besides this, E. coli expressed GST-HarpinEch fusion proteins and produced high levels of a protein with an estimated molecular mass of 63.51 kDa in sodium dodecyl sulfate polyacrylamide gels. The purified GST-HarpinEch fusion proteins can elicit HR–like necrosis in tobacco leaves. In the early study of our lab, the expression of PaCDPK1 of P. amabilis were induced by infection of E. chrysanthemi. Therefore, we cloned PaCDPK1 promoter and the promoter sequence was then fused with a GUS reporter gene, and the construct was delivered into Arabidopsis thaliana plants by Agrobacterium tumefaciens–mediated transformation. In the result, the expression of the PaCDPK1 gene promoter is induced by wounding, cold stress. PaCDPK1 gene promoter activity constitutive expression may be limited to specific organs such as sepal, filament, stigma. These results will eventually contribute to agricultural practice in P. amabilis.
李汝剛(1997)表達HarpinEa和Osmotin 基因的馬鈴薯植株對晚疫病的抗性分析。中國農業科學院,博士論文。
位國慶、陳文輝(1998)溫度與相對濕度對蝴蝶蘭軟腐病發生之影響。台糖研究所研究彙報第159期。
黃德昌、李惠鈴、周雅慧、呂瑛敏(1998)蝴蝶蘭軟腐病化學防治及其病原細菌之抗藥性。植病會刊 7:216 (摘要)。
黃德昌(2003)台灣細菌性病害防治現況與檢討。重要防檢疫植物病原細菌綜合管理研討會專刊,第91-110頁行政院農委會動植物防疫檢疫局暨國立中興大學印。台中。
高天文(2004)蝴蝶蘭中逆境相關訊息傳遞基因之選殖與特性分析。國立成功大學生物學研究所碩士論文。
Alfano J.R., Bauer D. W., Milos T. M., and Collmer A. (1996) Analysis of therole of the Pseudomonas syringae pv. syringae HrpZ harpin in elicitation ofthe hypersensitive response in tobacco using functionally nonpolar deletion mutations, truncated HrpZ fragments, and hrmA mutations. Mol. Microbiol. 19:715–728.
Alscher, R.G., Donahue J.L., and Cramer C.L. (1997 ) Reactive oxygen species and antioxidants relationships in green cells. Physiol. Plant 100: 224- 233
Alvarez M.E., Pennell R.I., Meijer P.J., Ishikawa A., Dixon R.A., and Lamb C. (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784
Arlat M., Van Gijsegem F., Huet J. C., Pernollet J. C., and Boucher C. A.. (1994) PopA1, a protein which induces a hypersensitive -like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas. solanacearum. EMBO J.13:543-553.
Baker C.J., O’Neill N.R., Keppler L.D., and Orlandi E.W. (1991) Early responses during plant-bacteria interactions in tobacco cell suspensions. Phytopathology. 81:1504-1507
Baker C.J., Orlandi E.W., and Mock N.M. (1993) Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol. 102:1341-1344
Ballmer P.E., Reinhart W.H., and Jordan P. (1994) Depletion of plasma vitamin C but not of vitamin E in response to cardiac operations. J. Thorac. Cardiovasc. 108:311-20.
Barney M.A. (1995) Erwinia amylovora hrpN mutants, blocked in Harpin synthesis, express A reduced VIRULENCE on Host plants and elicit variable hypersensitive reactions on tobacco. Plant Pathol. 101:333-340
Bauer D. W., Wei Z.M., Beer S. V., and Collmer A. (1995) Erwinia chrysanthemi harpinEch: an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol. Plant-Microb. Interact. 8:484–491
Beauchamp C., and Fridovich S. (1971) Superoxide dismutase-Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44:276-287
Beers E.P., and McDowell J.M. (2001) Regulation and execution of programmed cell death in response to pathogens, stress and developmental cues. Curr. opin. plant biol. 4:561-567
Bennett M., Gallagher M., Fagg J., Bestwick C., Paul T., Beale M. and Mansfield J. (1996) The hypersensitive reaction, membrane damage and accumulation of autofluorescent phenolics in lettuce cells challenged by Bremia lactucae. Plant J. 9:851-865
Bi Y. M., Kenton P., Mur L., Darby R., and Draper J. (1995) Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J. 8:235-245.
Blume B., Nurnberger T., Nass N. and Scheel D. (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell. 12:1425-1440
Bolwell G.P., and Wojtaszek P. (1997) Mechanisms for the generation of reactive oxygen species in plant defence—a broad perspective. Physiol. Mol. Plant Pathol. 51:347–366
Bolwell G.P., Butt V.S., Davies D.R., and Zimmerlin A. (1995) The origin of the oxidative burst in plants. Free Radical Res. 23: 517–532
Bolwell P.P., Page A., Pislewska M., and Wojtaszek P. (2001) Pathogenic infection and the oxidative defences in plant apoplast. Protoplasma. 217:20- 32
Bowles D.J. (1990) Defense-related proteins in higher plants. Ann. Rev. Biochem. 59:873-907.
Buonaurio R., Della Torre G., and Montalbini P. (1987) Soluble superoxide dismutase (SOD) in susceptible and resistant host-parasite complexes of phaseolus vulgaris and Uromyces phaseoli. Physiol. Mol. Plant Pathol. 31: 173-184
Chen Z. X., Silva H., and Klessig D. F. (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262: 1883-1886.
Cheong Y.H., Moon B.C., Kim J.K., Kim C.Y., Kim M.C., Kim I.H., Park C.Y., Kim J.C., Park B.O, Koo S.C., Yoon H.W., Chung W.S., Lim C.O., Lee S.Y., and Cho M.J. (2003)BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol.132:1961 -1972
Chico J.M., Raices M., Tellez-Inon M.T., and Ulloa R.M. (2002)A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol.128:256-270
Chittoor J.M., Leach J.E., and White F.F. (1997) Differential induc-. tion of a peroxidase gene family during infection of rice by Xanthomonas oryzae pv.oryzae. Mol. Plant-Microb. Interact. 10:861-871
Conrath U., Chen Z. X., Ricigliano J. R., and Klessig D. F. ( 1995) Two inducers of plant defense responses, 2,6 dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proc. Natl. Acad. Sci. 92:7143-7147.
Dangl J.L., Dietrich R.A., and Richberg M.H. (1996) Death Don't Have No Mercy: Cell Death Programs in Plant-Microbe Interactions. Plant Cell. 8:1793–1807.
Deighton N., Muckenschnabel I., Goodman B.A., and Williamson B. (1999) Lipid peroxidation and the oxidative burst associated with infection of Capsicum annuum by Botrytis cinerea. Plant J. 20:485–492
Delaney T. P., Uknes S., Vernooij B., Friedrich L., Weymann K., Ne-grotto D., Gaffney T., Gut-Rella M., Kessmann H., Ward E., and Ryals J. ( 1994) A central role of salicylic acid in plant disease resis-tance. Science 266:1247- 1250
Delledonne M., Zeier J., Marocco A., and Lamb C. (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. U. S. A. 98:13454–13459
De Wit P.J. (1997) Pathogen avirulence and plant resistance: A key role for recognition. Trends Plant Sci. 2:452–458
Diqiu Y., Chunhong C., and Zhixiang C. (2001) Evidence for an Important Role of WRKY DNA Binding Proteins in the Regulation of NPR1 Gene Expression. Plant Cell. 13:1527-1540
Doares S.H., Narvaez-Vasquez J., Conconi A., and Ryan C.A. (1995) Salicylic Acid Inhibits Synthesis of Proteinase Inhibitors in Tomato Leaves Induced by Systemin and Jasmonic Acid. Plant Physiol. 108:1741-1746
Doke N. (1997) The oxidative burst: roles in signal transduction and plant stress. In JG Scandalios, ed, Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 785–813
Dorey S., Kopp M., Geoffroy P., Fritig B., and Kauffmann S. (1999) Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylalanine ammonia lyase stimulation, salicylic acid accumulation, or scopoletin consumption in cultured tobacco cells treated with elicitin. Plant Physiol. 121:163–171
Draper J. (1997) Salicylate, superoxide synthesis and cell suicide in plant defence. Trends Plant Sci. 2:162-165
Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki M., Shinozaki K., and Yamaguchi-Shinozaki K. (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, highsalt- and cold-responsive gene expression. Plant J. 33:751-63
Durner J., and Klessig D. F. (1996) Salicylic acid is a modulator of tobacco and mammalian catalases. J. Biol. Chem. 271:28492-28501
Durner J., and Klessig D.F.(1999)Nitric oxide as a signal in plants. Curr. Opin. Plant Biol. 2:369-374
Eulgem T., Rushton P.J., Robatzek S., and Somssich I.E. (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5:199-206
Farmer E.E., Johnson R.R., and Ryan C.A. (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol. 98:995-1002
Fellbrich G., Blume B., Brunner F., Hirt H., Kroj T., Ligterink W., Romanski A., and Nurnberger T. (2000) Phytophthora parasitica elicitor- induced reactions in cells of Petroselinum crispum. Plant Cell Physiol. 41: 692–701
Flor H. H. (1971) Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275-296.
Fry S.C. (1986) Cross-linking of matrix polymers in the growing cell-walls of angiosperms .Annu. Rev. Plant Physiol. 37:165–186
Glazener J.A., Orlandi E.W., and Baker C.J. (1996) The active oxygen response of cell suspensions to incompatible bacteria is not sufficient to cause hypersensitive cell death.Plant Physiol.110:759–763
Gonner M.V., and Schlosser E. (1993) Oxidative stress in interactions between Avena sativa L. and Drechslera spp. Physiol. Mol. Plant Pathol. 42:221–234
Goodman R.N., and Novacky A.J. (1994) The hypersensitive reaction in plants to pathogens. A resistant phenomenon. APS PRESS, St.Paul, Minnesota, p.244.
Govrin E.M., and Levine A. (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10: 751– 757
Grace M.L., Chandrasekharan M.B., Hall T.C., and Crowe A.J. (2004) Sequence and spacing of TATA box elements are critical for accurate initiation from the beta-phaseolin promoter. J. Biol. Chem. 279:8102-8110
Grant J.J., Loake G.J. (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol. 124:21–29
Grant M., Brown I., Adams S., Knight M., Ainslie A., and Mansfield A. (2000) The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J. 23:441–450
Greenberg J. T. (1996) Programmed cell death: a way of life for plants. Proc. Natl. Acad. Sci. 29:12094–12097.
Greenberg J .T. (1997) Programmed cell death in plantpathogen interactions. Annu. Rev.Plant Physiol. Plant Mol. Biol. 48:524–545
Greenberg J .T., and Yao N. (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol. 6:201–211
Hammond-Kosack K.E., Tang S., Harrison K., and Jones J.D. (1998) The tomato Cf-9 disease resistance gene functions in tobacco and potato to confer responsiveness to the complementary fungal avirulence gene product Avr9. Plant Cell. 10:1251–1266
Harmon A.C., Gribskov M., and Harper J.F. (2000) CDPKs-a kinase for every Ca2+ signal.Trends Plant Sci. 5:154-159
Harrison S.J., Curtis M.D., McIntyre C.L., Maclean D.J., and Manners J.M. (1995) Differential expression of peroxidase isogenes during the early stages of infection of the tropical forage legume Stylosanthes humilis by Colletotrichum gloeosporioides. Mol. Plant-Microb. Interact. 8:398-406.
Heath M.C. (2000) Hypersensitive response-related cell death. Plant Mol. Biol. 44:321-334
He S. Y., Huang H.C., and Collmer A. (1993) Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73:1255–1266
Hiraga S., Ito H., Sasaki K., Yamakawa H., Mitsuhara I., Toshima H, Matsui H., Honma M., and Ohashi Y. (2000) Wound-induced expression of a tobacco peroxidase is not enhanced by ethephon and suppressed by methyl jasmonate and coronatine. Plant Cell Physiol. 41: 165-170
Hiraga S., Yamamoto K., Ito H., Sasaki K., Matsui H., Honma M., Nagamura Y., Sasaki T., and Ohashi Y. (2000) Diverse expression profiles of 21 rice peroxidase genes. FEBS lett. 471: 245–250
Hoffman T., Schmidt J.S., Zheng X., and Bent A.F. (1999) Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol. 119:935- 950
Huh G.H., Lee S.J., Bae Y.S., Liu J.R., and Kwak S.S. ( 1997) Molecular cloning and characterization of cDNAs for anionic and neutral peroxidases from suspension-cultured-cells of sweet potato and their differential expression in response to stress. Mol. Gen. Genet. 255:382-91
Ishige F., Mori H., Yamazaki K., and Imaseki H. (1993) Identification of a basic glycoprotein induced by ethylene in primary leaves of azuki. bean as a cationic peroxidase. Plant Cell Physiol. 101:193–199
Ito H., Kimizuka F., Ohbayashi A., Matsui H., Honma, M., Shinmyo A., Ohashi Y., and Rodrigues R. L. (1994) Molecular cloning and characterization of two complementary cDNAs encoding putative peroxidase from rice (Oryza sativa L.). Plant Cell Rep. 13:361-366.
Jabs T. (1999).Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharmacol. 57:231-45
Jean-Stéphane V., Gabor G., and Marie-Noëlle B. (2001) Evidence for the Involvement of an Oxidative Stress in the Initiation of Infection of Pear by Erwinia amylovora. Plant Physiol. 125:2164-2172.
Jones D.A., Thomas C.M., Hammond-Kosack K.E., Balint- Kurti P.J., and Jones J.D. (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793
Kachroo A., He Z., Patkar R., Zhu Q., Zhong J., Li D., Ronald P., Lamb C., and Chattoo B.B. (2003) Induction of H2O2 in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens. Transgenic Res. 12:577-86
Kamoun S., Van West P., Vleeshouwers V.G., de Groot K.E., and Govers F. (1998) Resistance of nicotiana benthamiana to phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell. 10:1413- 1426
Kanazawa Y., Shichi H., and Uritani I. (1965) Biosynthesis of peroxidases in sliced or black rot-infected sweet potato roots. Agr. Biol. Chem. 29:840-47
Kawano T., and Muto S. (2000) Mechanism of peroxidase actions for salicylic acid-induced generation of active oxygen species and an increase in cytosolic calcium in tobacco cell suspension culture. J. Exp. Bot. 51: 685– 693
Kawaoka A., Kawamoto T., Ohta H., Sekine M., Takano M., and Shinmyo A. (1994) Wound-induced expression of horseradish peroxidase. Plant Cell Rep. 13:149-154
Keen N. T. (1990) Gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet. 24:447-463.
Keppler L.D, Baker C.J., and Atkinson M.M. (1989) Active oxygen production during a bacteria-induced hypersensitive reaction in tobacco suspension cells. Phytopathology. 79:974–978
Kim C.Y., and Zhang S. (2004) Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant J. 38:142-151
Kim S.T., Cho K.S., Yu S., Sang S.G., Hong J.C., Han C.D., Bae D.W., Nam M.H., and Kang K.Y. (2003) Proteomic analysis of differentially expressed poteins induced by rice blast fungus and elicitor in suspension-cultured rice cells. Proteomics 3:2368–2378
King E.O., Ward M.K., and Raney D.E. (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44:301–307
Komatsu S., Li W., Konishi H., Yoshikawa M., Konishi T., and Yang G. (2001)Characterization of a Ca2+-dependent protein kinase from rice root: differential response to cold and regulation by abscisic acid. Biol. Pharm. Bull. 24:1316-1319
Kristensen B.K., Bloch H., and Rasmussen S.K. (1999) Barley Coleoptile Peroxidases. Purification, Molecular Cloning, and Induction by Pathogens Plant Physiol. 120:501–512
Kuzniak E., and Sklodowska M. (2004) The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves. J. Exp. Bot. 155:605-612
Kuzniak E., and Sklodowska M. (2005) Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta. 222:192–200
Lagrimini L.M., and Rothstein S. (1987) Tissue specificity of tobacco. Peroxidase isozymes and their induction by wounding and tobacco. mosaic virus infection. Plant Physiol. 84:438-442
Lamb C., and Dixon, R.A. (1997) The oxidative burst in plant disease resistance. Annu.Rev. Plant Physiol. Plant Mol. Biol. 48:251-275
Le deunff E., Davoine C., Le Dantec C., Billard J.P. , and Huault C. (2004) Oxidative burst and expression of germin/oxo genes during wounding of ryegrass leaf blades: comparison with senescence of leaf sheaths. Plant J. 38:421-431
Leslie C.A., and Romani RJ. (1988) Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol. 88:833-837
Levine A., Tenhaken R., Dixon R., and Lamb C. (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593
Lingqiang M., Guan Jun Z., and John G. (2000) Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. The Plant Journal 22:87-95
Lovrekovich L., Lovrekovich H., and Stahmann M.A. (1968) Tobacco. mosaic virus-induced resistance to Pseudomonas tabaci in tobacco. Phytopathology. 58:1034-1035
Magliano, M.T., and Casal J.J. (1998) In vitro crosslinking of extensin precursos by mustard extracellular isoforms of peroxidase that respond either to phytochrome or to wounding. J. Exp. Bot.. 49:1491-1499
Malamy J., Carr J.P., Klessig D.F., and Raskin I. (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to tobacco mosaic virus. Science 250: 1002-1004
Martin G.M., Bogdanove A.J., and Sessa G. (2003) Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant Biol. 54: 23– 61
Martin M.L., and Busconi L.(2001)A rice membrane-bound calcium- dependent protein kinase is activated in response to low temperature. Plant Physiol.125:1442-1449
McAinsh M.R., and Hetherington A.M (1998) Encoding specicity in Ca2+ signaling systems. Trends Plant Sci. 3:32-36
McDougall G.J. (1993) Phenolic cross-links in growth and devel-. opment of plants.In Polyphenolic Phenomena (Scalberts, A., ed.). Paris: INRA Editions, pp. 129-136.
Mehdy M.C., Sharma Y.K., Sathasivan K., Bays N.W. (1996) The role of activated oxygen species in plant disease resist-ance. Physiol. Plant. 98: 365–374
Milosevic N., and Slusarenko, A. J. (1996) Active oxygen metabolism and lignification in the hypersensitive response in bean. Physiol. Mol. Plant Pathol. 49:143-158
Mittler R., and Lam E. (1996) Sacrifice in the face of foes: pathogen- induced programmed cell death in plants. Trends Microbiol. 41:10-15
Miyagawa Y., Tamoi M., and Shigeoka S. (2000) Evaluation of defence system in chloroplasts to photooxidative stress caused by paraquat using transgenic tobacco plants expressing catalase from Escherichia coli. Plant Cell Physiol. 41:311–320
Montalbini P., and Buonaurio R. (1986) Effect of tobacco mosaic virus infection on l evels of soluble superoxide dismutase (SOD) in Nicotiana tabacum and Nicotiana glutinosa leaves. Plant Sci. Lett 47:135-143
Niebel A., Heungens K., Barthels N., Inze D., Van Montagu M., Gheysen G. (1995) Characterization of a pathogen-induced potato catalase and its systemic expression upon nematode and bacterial infection. Mol. Plant- Microb. Interact. 8:371-8
Nishiuchi T., Shinshi H., and Suzuki K. (2004) Rapid and Transient Activation of Transcription of the ERF3 Gene by Wounding in Tobacco Leaves. J. Biol. Chem. 279:55355–55361
Nurnberger T., and Scheel D. (2001) Signal transmission in the plant immune response. Trends Plant Sci. 6:372-379
Ogawa, K., Kanematsu, S. and Asada, K. (1997) Generation of superoxide anion and localization of CuZn-SOD in the vascular tissue of spinach hypocotyls: Their association with lignification. Plant Cell Physiol. 38: 1118– 1126
Ohme-Takagi M., Suzuki K., and Shinshi H. (2000) Regulation of ethylene-induced transcription of defense genes. Plant Cell Physiol. 41:1187- 1192
Oksanen E., Ha ikkio E., Sober J, and Karnosky D.F. (2003) Ozone- induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytol. 161:791–799.
Palva T. K., Holmström K.O., Heino P., and Palva E. T. (1993). Induction of plant defense response by exoenzymes of Erwinia Carotovora subsp. carotovora. Mol. Plant-Microbe Interact. 6:190-196.
Paranidharan V., Palaniswami A., Vidhyasekaran P., and Velazhahan R. (2005) A host-specific toxin of Rhizoctonia solani triggers superoxide dismutase (SOD) activity in rice. Archives of Phytopathology and Plant Protection 38:151-157
Pennell R.I., and Lamb C. (1997) Programmed Cell Death in Plants. Plant Cell. 9:1157–1168
Rasmussen J.B., Smith J.A., Williams S., Burkhart W., Ward E., Somerville S.C., Ryals, J., and Hammerschmidt, R. (1995) cDNA cloning and systemic expression of acidic peroxidases associated with systemic acquired-resistance to disease in cucumber. Physiol. Mol. Plant Pathol. 46: 389–400
Rasmussen J., Hammerschmidt R., and Zook M. (1991) Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv syringae. Plant Physiol. 97:1342–1347
Rathjen J.P., Moffett P. (2003) Early signal transduction events in specific plant disease resistance. Curr. Opin. Plant Biol. 6:300–306
Raventos D., Jensen A.B., Rask M.B., Casacuberta J.M., Mundy J., and San Segundo B. (1995) A 20 bp cis-acting element is both necessary and sufficient cient to mediate elicitor response of a maize PRms gene. Plant J. 7:147- 155
Reimers P.J., Guo A., and Leach J.E. (1992) Increased activity of a cationic peroxidase associated with. an incompatible interaction between Xanthomonas oryzae pv.oryzae and rice Oryza sativa. Plant Physiol. 99:1044 -1050
Richberg M.H., Aviv D.H., and Dangl J.L. (1998) Dead cells do tell tales. Curr. Opin. Plant Biol. 1:480–485
Roberts E., Kutchan T., and Kolattukudy P.E. (1988) Cloning and sequencing of cDNA for a highly anionic peroxidase from potato and the induction of its mRNA in suberizing potato tubers and tomato fruits. Plant Mol. Biol. 11:15-26
Rogers H.J., Bate N., Combe J., Sullivan J., Sweetman J., Swan C., and Lonsdale D.M. (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol. Biol. 45:577-85.
Romeis T., Piedres P., and Jones J.D. (2000) Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response. Plant Cell. 12:803-815
Rudd J.J., and Franklin-Tong V.E. (2001) Unravelling response specificity in Ca2+ signalling pathways in plant cells. New Phytol. 151:7–33
Rushton P.J., Reinstadler A., Lipka V., Lippok B., and Somssich I.E. (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell. 14: 749-762
Rushton P.J., Torres J.T., Parniske M., Wernert P., Hahlbrock K., and Somssich I.E. (2000) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J. 15:5690-5700
Ryals J.A., Neuenschwander U.H., Willits M.G., Molina A., Steiner H.Y., and Hunt M.D. (1996) Systemic acquired resistance. Plant Cell. 8:1809- 1819
Ryals J.,Uknes S., and Ward E. (1994) Systemic acquired resistance . Plant Physiol.104:1109-1112
Saijo Y., Hata S., Kyozuka J., Shimamoto K., and Izui K. (2000) Over- expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23:319-327
Salinas J., Oeda K., and Chua N.H. (1992) Two G-box-related sequences confer different expression patterns in transgenic tobacco. Plant Cell. 4:1485- 1493
Scandalios J.G. (1993) Oxygen stress and superoxide dismutases. Plant Physiol. 101:7 –12
Scandalios J.G., Guan L., and Polidoros A.N. (1997) Catalases in plants: gene structure, properties, regulation and expression. In: Scandalios JG, ed. Oxidative stress and the molecular biology of antioxidants defenses. New York: Cold Spring Harbor Laboratory Press, 343–406
Shirasu K., Nakajima H., Rajasekhar V. K., Dixon R .A., and Lamb C. (1997) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signal in the activation of defense mechanisms. Plant Cell. 9:261-270
Simons T.J., and Ross A.F. ( 1970) Enhanced peroxidase activity associated with induction of resistance to tobacco mosaic virus in hypersensitive tobacco. Phytopathology. 60:383-384
Soylu E.M., Soylu S., and Baysal Ö., (2003) Induction of disease resistance and antioxidant enzymes by acibenzolar-S-methyl against bacterial canker (Clavibacter michiganensis subsp. michiganensis) in tomato. Journal of Plant Pathology 85:175-181
Staskawicz B. J., Ausubel F. M., Baker B. J., Ellis J. G., and Jones J. D. . (1995) Molecular genetics of plant disease resistance. Science 268:661-667
Steven J., Clough ,and Andrew F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743
Stuiver M.H., and Custers J.H. (2001) Engineering disease resistance in plants. Nature 411:865-868
Susumu H., Katsutomo S., Hiroyuki I., Yuko O., and Hirokazu M. (2001) A Large Family of Class III Plant Peroxidases. Plant and Cell Physiol. 42:462 -468
Sutherland M.W. (1991) The generation of oxygen radicals during host plant responses to infection. Physiol. Mol. Plant Pathol. 39:79-93
Svalheim D., and Robertsen B. (1990) Induction of peroxidases in. cucumber hypocotyls by wounding and fungal infection. Physiol. Plant 78:261–267
Tang W., and Perry S.E. (2003) Binding site selection for the plant MADS domain protein AGL15: an in vitro and in vivo study. J. Biol. Chem. 278: 28154-9
Tiedemann A.V. (1997) Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiol. Mol. Plant Pathol. 50:151–166
Vance C.P., Kirk T.K., and Sherwood R.T. (1980) Lignification as a mechanism of disease resistance. Annu.Rev. Phytopathol. 18: 259–288
Van den Ackerveken G.F., Van Kan J.A., and De Wit P.J. (1992) Molecular analysis of the avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum fully supports the gene-for-gene hypothesis. Plant J. 2:359–366.
Van Loon L.C. (1999) Occurrence and properties of plant pathogenesis-related protein. Pages 1-20 in :Pathogenesis-Related Proteins in Plants .S. K. Datta and S. Muthukrishnan,eds.CRC Press, New York.
Van Loon L.C, Pierpoint W.S., Boller T., and Conejero V.. (1994). Recommendations for naming plant pathogenesis-related proteins. Plant Molec. Biol. Report. 12:245-264
Van Loon L.C., and Van Strien E.A. (1999) The families of pathogenesis -related proteins,their activities, and comparative analysis of PR-1 type proteins.Physiol. Mol. Plant. Pathol. 55:85-97
Venisse J.S., Gullner G., and Brisset M.N. (2001) Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. Plant Physiol.125:2164-72
Vieweg M.F., Fruhling M., Quandt H.J., Heim U., Baumlein H., Puhler A., Kuster H., and Andreas M.P. (2004) The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants. Mol. Plant Microbe. Interact. 17: 62-69
Wang Z., Yang P., Fan B., and Chen Z. (1998) An oligo selection procedure for identification of sequence-specific DNA-binding activities associated with the plant defence response. Plant J. 16:515-522
Wei Z.M., Laby R.J., Zumoff C.H., Bauer D.W., He S.Y., Collmer A., and Beer S.V. (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85–88
Wendehenne D., Durner J., Chen Z., and Klessig D.F. (1998) Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidases. Phytochemistry 47:651-657
Wendehenne D., Durner J., and Klessig D.F. (2004) Nitric oxide: a new player in plant signalling and defense responses. Curr. Opin Plant Biol. 7: 449 – 455
Wen-ping C. ,and Tsong-teh K. (1993) A simple and rapid method for the preparation of gramnegative bacterial genomic DNA. Nucleic Acids Research 21
Willekens H., Inze D., Van Montagu M., and van Camp W. (1995) Catalases in plants. Mol. Breed 1:207–228
Wojtaszek P. (1997) Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322:681–692
Xie Z., and Chen Z. (1999) Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. Plant Physiol. 120:217-226
Xu H., and Heath M.C. (1998) Role of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus. Plant Cell. 10:585–598
Yang Y., Shah J., and Klessig D.F. (1997) Signal perception and transduction in plant defense responses. Genes Dev.11:1621-1639