簡易檢索 / 詳目顯示

研究生: 雷善佳
Lessage, Jacky
論文名稱: 透過氧化矽奈米顆粒引入發展矽基紫外光感測元件
Study of Silicon-Based UV Photodetectors Incorporating Silica Nanoparticles
指導教授: 陳嘉勻
Chen, Chia-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 71
外文關鍵詞: Silicon photodetector, silica nanoparticles, PMMA passivation, photodetection, optical properties, optoelectronic performance, siloxane network
相關次數: 點閱:25下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Silicon-based photodetectors are widely used due to their cost-effectiveness and CMOS compatibility, but their performance is hindered by high dark current, charge recombination, and limited UV sensitivity. To address these challenges, this study integrates silica nanoparticles (SiO₂ NPs) and poly (methyl methacrylate) (PMMA) as a hybrid passivation layer to enhance device performance. This study explores how silica morphology, PMMA integration, and spin-coating speed influence the structural, optical, and optoelectronic performance of the device. All electrical measurements were conducted at a saturation voltage of 3V~4V, ensuring stable photocurrent evaluation.
    SEM and XRD analyses confirmed the successful integration of silica nanoparticles within the PMMA matrix, contributing to improved film uniformity. FTIR analysis confirmed the successful formation of silica nanoparticles with a well-defined siloxane (Si-O-Si) network and surface-bound hydroxyl (-OH) groups, ensuring strong chemical bonding and potential for further functionalization.
    Optical characterization demonstrated that silica nanoparticles exhibit strong absorption at 342 nm, while PMMA, with its wide bandgap (4.26 eV), acts as a transparent insulating layer. Photoluminescence spectroscopy showed that PMMA reduces defect-related emissions, leading to improved charge carrier transport and lower recombination losses.
    Optoelectronic measurements at 4V showed that PMMA significantly reduces dark current, improving device stability and photodetection sensitivity. The two-step silica deposition cycle/PMMA photodetector at 4000 rpm exhibited the best performance, achieving a responsivity of 0.0037 A/W, detectivity of 5.50 × 1010 Jones, and an external quantum efficiency (EQE) of 1.02% at 450 nm. Meanwhile, the 3000 rpm two-step deposition cycle device recorded the highest on/off ratio (766.76), indicating optimized light-switching behavior.
    Overall, this study highlights the importance of material engineering and processing conditions in optimizing silicon-based photodetectors. The findings provide a promising pathway for developing high-performance, cost-effective photodetectors for optical sensing applications.

    TABLE OF CONTENTS VI LIST OF TABLES IX LIST OF FIGURES X Chapter 1 Introduction 12 1.1 Background 12 1.2 Research Motivation 13 1.3 Research Objective 14 Chapter 2 Literature Review 15 2.1 Overview of Photoconductors 15 2.2 Low dimensional nanomaterials in silicon-based photodetectors 15 2.3 Silica Nanoparticles in Photodetectors 17 2.4 Role of Surface Passivation 17 2.5 Our device structure 18 2.6 Performance Metrics for Photodetectors 18 2.6.1 Dark Current 18 2.6.2 Responsivity 19 2.6.3 Detectivity 20 2.6.4 On/Off ratio 20 2.6.5 External Quantum Efficiency (EQE) 21 Chapter 3 Experimental Procedures and Instruments 22 3.1 Experimental Process Flow 22 3.2. Experimental Materials 23 3.3 Measurement Instruments 26 3.3.1 Ultrasonic Cleaner 26 3.3.2 Heating Panel 26 3.3.3 Centrifuge 26 3.3.4 Spin Coater 26 3.3.5 Electronic Precision Balances 27 3.4 Experiment Procedure 27 3.4.1 Substrate Preparation 27 3.4.2 Silica nanoparticles synthesis 27 3.4.3 Preparation of Polymethyl methacrylate (PMMA) 29 3.4.4 Silica Nanoparticles thin film deposition 29 3.4.5 Polymethyl methacrylate (PMMA) thin film deposition 29 3.4.6 Electrodes Evaporation 29 3.5. Material Analysis and Characterization Instruments 30 3.5.1 UV-Vis Spectrophotometer 30 3.5.2 Electron-beam Evaporation System 31 3.5.3 Semiconductor Parameter Device Analyzer 32 3.5.4 High-Resolution Scanning Electron Microscope, HR-SEM 33 3.5.5 Source Measure Unit, SMU 34 3.5.6 Power Meter and Thermophile Sensor 35 3.5.7 Fourier Transform Infrared Spectrometer 36 3.5.8 X-Ray Diffractometer, XRD 37 Chapter 4 Results and Discussion 38 4.1 Material Characterization 38 4.1.1 Scanning Electron Microscopy (SEM) and Particle Size Analysis 38 4.1.2 Fourier Transform Infrared Spectroscopy (FTIR) Analysis 40 4.1.3 X-ray Diffraction (XRD) Analysis 42 4.2 Optical Properties 43 4.2.1 UV-Vis Absorption and Optical Bandgap Estimation 44 4.2.2 Optical behavior and Influence of PMMA on Silica nanoparticles 46 4.2.3 Photoluminescence Spectroscopy 47 4.3 Optoelectronic Performance 49 4.3.1 Current-Voltage Characteristics and Photocurrent Response for Silica Devices 49 4.3.2 Current-Voltage Characteristics and Photocurrent Response for silica/PMMA devices (one-step silica deposition cycle) 52 4.3.3 Current-Voltage Characteristics and Photocurrent Response for silica/PMMA devices (two-step silica deposition cycle) 56 4.3.4 Key performance characteristics summary for silica/PMMA devices 60 Chapter 5 Conclusion 62 Chapter 6 Future work 64 References 65

    [1] J. Kim, J. Lee, S. K. Park, A. Facchetti, J.-M. Lee, and T. J. Marks, “Recent Advances in Low-Dimensional Nanomaterials for Photodetectors.,” Small Methods, vol. 8, May 2023, doi: 10.1002/smtd.202300246.
    [2] B. A. Taha et al., “Plasmonic-enabled nanostructures for designing the next generation of silicon photodetectors: Trends, engineering and opportunities,” May 01, 2024, Elsevier B.V. doi: 10.1016/j.surfin.2024.104334.
    [3] V. Igor, “Semiconductor Photodetectors,” Dec. 2020, doi: 10.1093/oso/9780198767275.003.0014.
    [4] J. A. Krishnaswamy, D. R. Mahapatra, P. C. Ramamurthy, and G. Hegde, “Introduction to Photodetectors,” Jan. 2022, doi: 10.1007/978-981-19-0607-7_4.
    [5] S. Bansal, N. Gupta, P. Jain, S. Kumar, A. K. Singh, and K. Parkash, “Photodetectors for Security Application,” Sep. 2021, doi: 10.1201/9781003126645-14.
    [6] N. Nasiri and A. Tricoli, “Chapter 5 - Nanomaterials-based UV photodetectors,” Industrial Applications of Nanomaterials, Jan. 2019, doi: 10.1016/b978-0-12-815749-7.00005-0.
    [7] H. Chen, K. Liu, L. Hu, A. A. Al-Ghamdi, and X. Fang, “New concept ultraviolet photodetectors,” Materials Today, vol. 18, Jul. 2015, doi: 10.1016/j.mattod.2015.06.001.
    [8] L. Shi and S. Nihtianov, “Comparative study of silicon-based ultraviolet photodetectors,” 2012. doi: 10.1109/JSEN.2012.2192103.
    [9] W. Tian et al., “Low-dimensional nanomaterial/Si heterostructure-based photodetectors,” Jun. 01, 2019, Blackwell Publishing Ltd. doi: 10.1002/inf2.12014.
    [10] N. Huo and G. Konstantatos, “Recent progress and future prospects of 2D-based photodetectors,” Dec. 01, 2018, Wiley-VCH Verlag. doi: 10.1002/adma.201801164.
    [11] Paras et al., “A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications,” Jan. 01, 2023, MDPI. doi: 10.3390/nano13010160.
    [12] A. A. Nayl, A. I. Abd-Elhamid, A. A. Aly, and S. Bräse, “Recent progress in the applications of silica-based nanoparticles,” May 06, 2022, Royal Society of Chemistry. doi: 10.1039/d2ra01587k.
    [13] A. Dev, M. N. Sardoiwala, and S. Karmakar, “Silica Nanoparticles:,” Mar. 2021, doi: 10.1201/9781351021388-11.
    [14] Y. Dastyar, M. M. Zerafat, and A. Jamekhorshid, “Fabrication of PMMA-SiO2 Transparent Nanocomposite Films as Energy Storage Barriers,” J Inorg Organomet Polym Mater, vol. 31, no. 2, pp. 599–613, Feb. 2021, doi: 10.1007/s10904-020-01736-x.
    [15] G. Soni, N. Gouttam, and P. Soni, “Optical properties of PMMA/ZnO/SiO2 composite thin film,” Mater Today Proc, vol. 30, Jan. 2020, doi: 10.1016/j.matpr.2020.04.027.
    [16] Z. Zhu, Z. Wang, C. Cheng, D. Li, and H. Chen, “High-performance graphene/Si hybrid photodetector with a PMMA coating layer,” Mater Lett, vol. 289, Jan. 2021, doi: 10.1016/j.matlet.2021.129393.
    [17] R. R. Madathingal and S. L. Wunder, “Effect of particle structure and surface chemistry on PMMA adsorption to silica nanoparticles,” Langmuir, vol. 26, no. 7, pp. 5077–5087, Apr. 2010, doi: 10.1021/la903505y.
    [18] M. A. Zahid, Y. H. Cho, and J. Yi, “Improvement in optical and electrical performance of hydrophobic and antireflective silica nanoparticles coating on PMMA for lightweight PV module,” Opt Mater (Amst), vol. 119, Sep. 2021, doi: 10.1016/j.optmat.2021.111371.
    [19] C. Wang, J. Zhao, H. Cao, C. Shen, J. Tang, and J. Liu, “Multispectral silicon-based photodetector with stacked PN junctions.,” Opt Express, vol. 31, Sep. 2023, doi: 10.1364/oe.495874.
    [20] H. Zimmermann, “Integrated Silicon Photodetectors,” Jan. 2004, doi: 10.1007/978-3-662-09904-9_2.
    [21] G. Dingemans and W. M. M. Kessels, “Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 30, no. 4, Jul. 2012, doi: 10.1116/1.4728205/919899.
    [22] T. Niewelt, W. Kwapil, M. Selinger, A. Richter, and M. C. Schubert, “Long-Term Stability of Aluminum Oxide Based Surface Passivation Schemes under Illumination at Elevated Temperatures,” IEEE J Photovolt, vol. 7, no. 5, pp. 1197–1202, Sep. 2017, doi: 10.1109/JPHOTOV.2017.2713411.
    [23] H. Kim et al., “Passivation properties of tunnel oxide layer in passivated contact silicon solar cells,” Appl Surf Sci, vol. 409, pp. 140–148, Jul. 2017, doi: 10.1016/J.APSUSC.2017.02.195.
    [24] Z. Chen et al., “High Responsivity, Broadband, and Fast Graphene/Silicon Photodetector in Photoconductor Mode,” Adv Opt Mater, vol. 3, no. 9, pp. 1207–1214, Sep. 2015, doi: 10.1002/adom.201500127.
    [25] R. N. Zitter, “Role of Traps in the Photoelectromagnetic and Photoconductive Effects,” Physical Review, vol. 112, no. 3, pp. 852–855, 1958, doi: 10.1103/PhysRev.112.852.
    [26] P. Fay, “Photodetectors,” Reference Module in Materials Science and Materials Engineering, Nov. 2015, doi: 10.1016/b978-0-12-803581-8.01813-0.
    [27] W. Tian et al., “Low‐dimensional nanomaterial/Si heterostructure‐based photodetectors,” InfoMat, vol. 1, May 2019, doi: 10.1002/inf2.12014.
    [28] Y. Wei, C. Lan, S. Zhou, and C. Li, “Recent Advances in Photodetectors Based on Two-Dimensional Material/Si Heterojunctions,” Oct. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/app131911037.
    [29] Y. Wei, C. Lan, S. Zhou, and C. Li, “Recent Advances in Photodetectors Based on Two-Dimensional Material/Si Heterojunctions,” Oct. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/app131911037.
    [30] N. Huo and G. Konstantatos, “Recent progress and future prospects of 2D-based photodetectors,” Dec. 01, 2018, Wiley-VCH Verlag. doi: 10.1002/adma.201801164.
    [31] Paras et al., “A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications,” Jan. 01, 2023, MDPI. doi: 10.3390/nano13010160.
    [32] W. Tian et al., “Low-dimensional nanomaterial/Si heterostructure-based photodetectors,” Jun. 01, 2019, Blackwell Publishing Ltd. doi: 10.1002/inf2.12014.
    [33] Z. Li, K. Xu, and F. Wei, “Recent progress in photodetectors based on low-dimensional nanomaterials,” Nanotechnol Rev, vol. 7, Sep. 2018, doi: 10.1515/ntrev-2018-0084.
    [34] H. Chang et al., “Silica Nanoparticles.,” Adv Exp Med Biol, vol. 1309, Jan. 2021, doi: 10.1007/978-981-33-6158-4_3.
    [35] M. Montalti, N. Zaccheroni, E. Rampazzo, L. Prodi, F. Mancin, and G. Battistini, “Fluorescent silica nanoparticles,” vol. 6099, Feb. 2006, doi: 10.1117/12.646027.
    [36] G. Kickelbick, D. Holzinger, and S. Ivanovici, “Organically Functionalized Silica Nanoparticles,” Jan. 2008, doi: 10.1007/978-3-211-75125-1_17.
    [37] J. Labéguerie-Egéa, C. Mcdonagh, and H. M. Mcevoy, “Synthesis, characterisation and functionalisation of luminescent silica nanoparticles,” Journal of Nanoparticle Research, vol. 13, Sep. 2011, doi: 10.1007/s11051-011-0539-0.
    [38] S. El Sayed and I. Otri, “20 - Silica nanoparticles for sensing applications,” Fundamentals of Sensor Technology, Jan. 2023, doi: 10.1016/b978-0-323-88431-0.00013-2.
    [39] R. Y. Hong et al., “Surface‐modified silica nanoparticles for reinforcement of PMMA,” J Appl Polym Sci, vol. 105, Apr. 2007, doi: 10.1002/app.26164.
    [40] K. Rashwan, G. Sereda, and E. Brakke, “Fluorescent labeling of materials using silica nanoparticles,” Nanotechnol Rev, vol. 3, Jan. 2014, doi: 10.1515/ntrev-2014-0008.
    [41] V. Shirshahi and M. Soltani, “Solid silica nanoparticles: applications in molecular imaging.,” Contrast Media & Molecular Imaging, vol. 10, Jul. 2014, doi: 10.1002/cmmi.1611.
    [42] E. A. Mun and B. A. Zhaisanbayeva, “Silica Nanoparticles for Biomedical Application: Challenges and Opportunities,” Eurasian Journal of Applied Biotechnology, Jan. 2020, doi: 10.11134/btp.1.2020.2.
    [43] M. Sulaman et al., “Interlayer of PMMA Doped with Au Nanoparticles for High-Performance Tandem Photodetectors: A Solution to Suppress Dark Current and Maintain High Photocurrent,” ACS Appl Mater Interfaces, vol. 12, no. 23, pp. 26153–26160, Jun. 2020, doi: 10.1021/ACSAMI.0C04093/ASSET/IMAGES/LARGE/AM0C04093_0008.JPEG.
    [44] S. K. Tzeng, M. H. Hon, and I. C. Leu, “Improvement in the Photocurrent to Dark Current Contrast Ratio of ZnO/Au Schottky Photodetector with PMMA Microlens Arrays,” J Electrochem Soc, vol. 157, no. 10, p. H919, 2010, doi: 10.1149/1.3464797.
    [45] X. Chen et al., “Analysis of the influence and mechanism of sulfur passivation on the dark current of a single GaAs nanowire photodetector,” Nanotechnology, vol. 29, no. 9, Jan. 2018, doi: 10.1088/1361-6528/aaa4d6.
    [46] D. Yang and D. Ma, “Development of Organic Semiconductor Photodetectors: From Mechanism to Applications,” Adv Opt Mater, vol. 7, no. 1, p. 1800522, Jan. 2019, doi: 10.1002/ADOM.201800522.
    [47] Y. Zhong et al., “Facile, Large-Quantity Synthesis of Stable, Tunable-Color Silicon Nanoparticles and Their Application for Long-Term Cellular Imaging,” ACS Nano, vol. 9, no. 6, pp. 5958–5967, Jun. 2015, doi: 10.1021/acsnano.5b00683.
    [48] H. Ong, W. Iskandar, J. Chong, … M. K.-C. E., and undefined 2023, “Investigation on Silane Concentration of SiO2 Nanoparticle: FTIR Analysis,” cetjournal.itHR Ong, WME Iskandar, J Chong, MMR Khan, TK Ong, BK ChuaChemical Engineering Transactions, 2023•cetjournal.it, Accessed: Jan. 16, 2025. [Online]. Available: https://www.cetjournal.it/index.php/cet/article/view/CET23106225
    [49] A. Biradar, P. Sarvalkar, S. Teli, … C. P.-M. T., and undefined 2021, “Photocatalytic degradation of dyes using one-step synthesized silica nanoparticles,” ElsevierAI Biradar, PD Sarvalkar, SB Teli, CA Pawar, PS Patil, NR PrasadMaterials Today: Proceedings, 2021•Elsevier, Accessed: Jan. 16, 2025. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S221478532039622X?casa_token=eTtEEGGQMl8AAAAA:r2oAGsuV_Dd34qd9H9Cqpf5qyJwIjRGh9WoAM144DU5OkrEhrgT8fQ0TjDVUgH36clL_yZngLA
    [50] M. Diaconu et al., “STRUCTURAL CHARACTERIZATION OF CHITOSAN COATED SILICON NANOPARTICLES-A FT-IR APPROACH,” Bull., Series B, vol. 72, no. 3, 2010.
    [51] M. Jafarzadeh, I. A. Rahman, and C. S. Sipaut, “Optical properties of amorphous organo-modified silica nanoparticles produced via co-condensation method,” Ceram Int, vol. 36, no. 1, pp. 333–338, Jan. 2010, doi: 10.1016/J.CERAMINT.2009.09.010.
    [52] J. Lee, J. Koo, B. Jang, and S. Kim, “Quantitative relationships between microstructures and electrochemical properties in Si core-SiOx shell nanoparticles for Li-ion battery anodes,” J Power Sources, vol. 329, pp. 79–87, Oct. 2016, doi: 10.1016/J.JPOWSOUR.2016.08.035.
    [53] M. Nowak, B. Kauch, P. S.-R. of scientific instruments, and undefined 2009, “Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy,” pubs.aip.org, Accessed: Jan. 16, 2025. [Online]. Available: https://pubs.aip.org/aip/rsi/article/80/4/046107/282275
    [54] P. Makuła, M. Pacia, and W. Macyk, “How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra,” Journal of Physical Chemistry Letters, vol. 9, no. 23, pp. 6814–6817, Dec. 2018, doi: 10.1021/ACS.JPCLETT.8B02892/SUPPL_FILE/JZ8B02892_LIVESLIDES.MP4.
    [55] R. Raciti, R. Bahariqushchi, C. Summonte, A. Aydinli, A. Terrasi, and S. Mirabella, “Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis,” J Appl Phys, vol. 121, no. 23, Jun. 2017, doi: 10.1063/1.4986436/143720.
    [56] B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, “Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra,” Langmuir, vol. 24, no. 16, pp. 8964–8970, Aug. 2008, doi: 10.1021/LA8010053/SUPPL_FILE/LA8010053-FILE001.PDF.
    [57] L. Martin, J. M. Cariou, J. Dugas, and P. Michel, “Refractive-index variations with temperature of PMMA and polycarbonate,” Applied Optics, Vol. 25, Issue 3, pp. 334-336, vol. 25, no. 3, pp. 334–336, Feb. 1986, doi: 10.1364/AO.25.000334.
    [58] M. M. Demir et al., “Optical properties of composites of PMMA and surface-modified zincite nanoparticles,” Macromolecules, vol. 40, no. 4, pp. 1089–1100, Feb. 2007, Accessed: Jan. 16, 2025. [Online]. Available: https://pubs.acs.org/doi/full/10.1021/ma062184t
    [59] R. Guo, A. Liu, F. Huang, J. Ding, M. Zhang, and M. Sheng, “Advances in colloidal quantum dot-based photodetectors,” J Mater Chem C Mater, vol. 10, Jan. 2022, doi: 10.1039/d2tc00219a.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE