簡易檢索 / 詳目顯示

研究生: 黃奕碩
Huang, Yi-Shuo
論文名稱: 高中生使用虛擬物理實驗之學習成就
Learning Achievement of Senior High School Student Using Virtual Experiments in Physics
指導教授: 游濟華
Yu, Chi-Hua
共同指導教授: 李孟學
Lee, Meng-Hsueh
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 71
中文關鍵詞: 虛擬實驗STEM教學高中生亞洲物理奧林匹亞競賽
外文關鍵詞: virtual experiments, non-parametric statistics, gifted students, distance learning
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2020年新冠疫情影響了全世界的生活方式,為了維持正常的生活便產生各種應對方式,包括遠端教學、上班等等,其中虛擬實驗便成為一種作為替代實體實驗的教學工具,而在2021年亞洲物理奧林匹亞競賽中被用來作為遠距測驗的手段,並且發揮了虛擬實驗的優勢。
    虛擬實驗比起實體實驗提供了更廣泛的實驗可能性。在現實中,某些危險或昂貴的實驗可能受到限制,而在虛擬環境中,這些限制可以被突破。學生可以探索更多不同的實驗情境,學習更廣泛的科學概念,並培養解決問題的能力。然而,虛擬實驗也面臨一些挑戰。其中之一是虛擬環境與真實環境之間的差異。有時候虛擬實驗可能無法完全模擬真實實驗的複雜性和細節,這可能導致學生在實際應用中遇到困難。因此,開發高保真、真實感的虛擬實驗是一個需要不斷改進的領域。未來,虛擬實驗在科學教育中有著巨大的潛力。隨著科技的不斷發展,虛擬實驗將變得更加逼真和互動性更強,進一步提高學生參與和學習的動機。同時,虛擬實驗也能夠透過數據分析來追蹤學生的學習進度和表現,為教師提供更有效的教學指導和個別化學習。
    虛擬實驗的優勢之一是可以降低實驗成本和資源的需求。物理實驗通常需要昂貴的實驗設備、化學試劑和材料,而這些對於某些學校或學生來說可能不容易取得。透過虛擬實驗,學生可以在虛擬環境中進行實驗,不僅節省了成本,同時也消除了對珍貴資源的浪費。
    本研究比較了高保真度虛擬實驗作為台灣科學教育中替代實體實驗的效果。本研究對來自台灣不同地區的高中生進行測試,以評估虛擬實驗作為學習工具的效果。首先比較參與虛擬和實體實驗的學生表現,結果顯示兩組之間沒有顯著差異。接者探討了不同學生程度在使用虛擬實驗的影響,發現虛擬實驗組和實體實驗組之間也沒有顯著差異。這些發現表明高保真虛擬實驗可能可以作為實體實驗替代品,尤其適用於那些無法取得昂貴實驗室設備的學生。然而,學生可能需要事先接受培訓,以有效地運用虛擬實驗來應對考試。這些結果對台灣的科學教育具有重要意義,顯示虛擬實驗在科學、技術、工程和數學(STEM)教育中可能是一個有效的工具,同時也需要進一步研究更複雜實驗並評估虛擬實驗對學習成果的長期影響。

    This research is based on the experience of the Asian Physics Olympiad competition (APhO) and involves the development of virtual experiments to investigate whether there are significant differences in the effectiveness of using virtual experiments compared to physical experiments in testing. To achieve this, experiments from the Physics Olympiad competition were selected to test gifted students in Taiwan. Non-parametric statistics were utilized to analyze the students' post-test scores to determine the effectiveness of virtual experiments.

    The results indicated that there were no significant differences between virtual and physical experiments, regardless of students' academic levels, suggesting that virtual experiments can be considered as an effective alternative, both in instructional settings and for students of varying abilities.

    Virtual experiment not only expands the scope of distance learning but also offers flexibility, allowing students to engage in experiment operations in a safe environment. This is particularly valuable for experiments that may be difficult to conduct or involve high costs. In the future, the findings of this research may encourage more schools and educational institutions to adopt virtual experiment technology, providing students with high-quality and secure experimental learning environments and further advancing the application in academic fields.

    摘要 i 致謝 v 目錄 vi 圖目錄 viii 表目錄 ix 第一章 緒論 1 1.1前言 1 1.1.1 虛擬操作實驗(Virtual Manipulative Experiments, VME) 3 1.1.2 實體操作實驗(Physical Manipulative Experimentation, PME) 5 1.1.3 線上測驗環境 5 1.2研究動機與目的 6 1.3文獻回顧 7 第二章 研究方法 9 2.1 研究流程 9 2.2 不等組的準實驗研究設計 11 2.3 研究參與者 12 2.4 虛擬實驗開發 13 2.4.1虛擬實驗與實體實驗器材比較 13 2.4.2 虛擬實驗介面設計介紹 15 2.5 力學黑盒子-內有小球的圓柱管 16 2.6 平行軸定理與細鋁桿實驗教學 18 2.7 虛擬實驗測驗 19 2.7.1 測量工具 19 2.7.2 虛擬測驗現場 20 2.8 資料分析 23 2.9 虛擬實驗開發工具:Unity 23 第三章 結果與討論 23 3.1統計分析結果 23 3.1.1 東西部地區差異 23 3.1.2 虛擬實驗的有效性 24 3.1.3不同程度的學生使用虛擬實驗的效果 27 3.2討論 29 第四章 結論與未來展望 30 參考文獻 32 附錄 36 附錄一 細鋁桿的轉動慣量與重力加速度---實驗講義 36 附錄二-虛擬力學黑盒子測驗試卷 55 附錄三-後測測驗配分 69

    [1] J. D. Gonzalez et al., “Advanced virtual laboratories of electromagnetism using a mobile game development ecosystem,” J Phys Conf Ser, vol. 1141, no. 1, p. 012011, Dec. 2018, doi: 10.1088/1742-6596/1141/1/012011.
    [2] J. T. Krüger, T. N. Höffler, M. Wahl, K. Knickmeier, and I. Parchmann, “Two comparative studies of computer simulations and experiments as learning tools in school and out-of-school education,” Instr Sci, vol. 50, no. 2, pp. 169–197, Apr. 2022, doi: 10.1007/S11251-021-09566-1/TABLES/10.
    [3] L.-J. Thoms and R. Girwidz, “Virtual and remote experiments for radiometric and photometric measurements Virtual and remote experiments for radiometric and photometric measurements,” 2017, doi: 10.1088/1361-6404/aa754f.
    [4] G. Olympiou and Z. C. Zacharia, “Blending physical and virtual manipulatives: An effort to improve students’ conceptual understanding through science laboratory experimentation,” Sci Educ, vol. 96, no. 1, pp. 21–47, Jan. 2012, doi: 10.1002/SCE.20463.
    [5] Z. Mihret, M. Alemu, and S. Assefa, “Effectiveness of blended physics laboratory experimentation on pre-service physics teachers’ understanding of the nature of science,” Pedagogical Research, vol. 2023, no. 1, pp. 2468–4929, 2023, doi: 10.29333/pr/12607.
    [6] J. J. Chini, A. Madsen, E. Gire, N. S. Rebello, and S. Puntambekar, “Exploration of factors that affect the comparative effectiveness of physical and virtual manipulatives in an undergraduate laboratory,” Physical Review Special Topics - Physics Education Research, vol. 8, no. 1, p. 010113, Apr. 2012, doi: 10.1103/PHYSREVSTPER.8.010113/FIGURES/5/MEDIUM.
    [7] G. J. Hwang, C. Y. Chang, and H. Ogata, “The effectiveness of the virtual patient-based social learning approach in undergraduate nursing education: A quasi-experimental study,” Nurse Educ Today, vol. 108, Jan. 2022, doi: 10.1016/j.nedt.2021.105164.
    [8] S. Yu, Q. Liu, J. Ma, H. Le, and S. Ba, “Applying Augmented reality to enhance physics laboratory experience: does learning anxiety matter?,” https://doi.org/10.1080/10494820.2022.2057547, 2022, doi: 10.1080/10494820.2022.2057547.
    [9] D. P. Zwart, S. L. Goei, J. E. H. Van Luit, and O. Noroozi, “Nursing students’ satisfaction with the instructional design of a computer-based virtual learning environment for mathematical medication learning,” Interactive Learning Environments, 2022, doi: 10.1080/10494820.2022.2071946.
    [10] K. Gomez, L. Lyons, and J. Radinsky, “Proceedings of the 9th International Conference of the Learning Sciences-Volume 1,” 2010, Accessed: Mar. 06, 2023. [Online]. Available: https://dl.acm.org/doi/abs/10.5555/1854360
    [11] H. Huang, G. J. Hwang, and M. S. Y. Jong, “Technological solutions for promoting employees’ knowledge levels and practical skills: An SVVR-based blended learning approach for professional training,” Comput Educ, vol. 189, Nov. 2022, doi: 10.1016/j.compedu.2022.104593.
    [12] Z. C. Zacharia and G. Olympiou, “Physical versus virtual manipulative experimentation in physics learning,” Learn Instr, vol. 21, no. 3, pp. 317–331, Jun. 2011, doi: 10.1016/j.learninstruc.2010.03.001.
    [13] F. J. Yang, C. Y. Su, W. W. Xu, and Y. Hu, “Effects of developing prompt scaffolding to support collaborative scientific argumentation in simulation-based physics learning,” https://doi.org/10.1080/10494820.2022.2041673, 2022, doi: 10.1080/10494820.2022.2041673.
    [14] D. K. Lara M. Triona, “Point and click or grab and heft: Comparing the influence of physical and virtual instructional materials on elementary school students’ ability to design experiments-Web of Science Core Collection,” 2010. https://www.webofscience.com/wos/woscc/full-record/WOS:000183782400002?SID=EUW1ED0BB4Oqaiv9M2TxrPnffakI6 (accessed Jan. 17, 2023).
    [15] E. Justo, A. Delgado, C. Llorente-Cejudo, R. Aguilar, and J. Cabero-Almenara, “The effectiveness of physical and virtual manipulatives on learning and motivation in structural engineering,” Journal of Engineering Education, vol. 111, no. 4, pp. 813–851, Oct. 2022, doi: 10.1002/JEE.20482.
    [16] J. G. Frederiksen et al., “Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: a randomized trial,” Surg Endosc, vol. 34, no. 3, pp. 1244–1252, Jan. 2019, doi: 10.1007/S00464-019-06887-8.
    [17] D. F. Donnelly, M. C. Linn, and S. Ludvigsen, “Impacts and Characteristics of Computer-Based Science Inquiry Learning Environments for Precollege Students,” Rev Educ Res, vol. 84, no. 4, pp. 572–608, Dec. 2014, doi: 10.3102/0034654314546954.
    [18] D. Song, A. Karimi, and P. Kim, “A Remotely Operated Science Experiment framework for under-resourced schools,” http://dx.doi.org/10.1080/10494820.2015.1041407, vol. 24, no. 7, pp. 1706–1724, Oct. 2015, doi: 10.1080/10494820.2015.1041407.
    [19] P. A. Wijaya, A. Widodo, and Muslim, “Virtual experiment of simple pendulum to improve student’s conceptual understanding,” J Phys Conf Ser, vol. 1806, no. 1, Mar. 2021, doi: 10.1088/1742-6596/1806/1/012133.
    [20] K. P. Chien, C. Y. Tsai, H. L. Chen, W. H. Chang, and S. Chen, “Learning differences and eye fixation patterns in virtual and physical science laboratories,” Comput Educ, vol. 82, pp. 191–201, 2015, doi: 10.1016/j.compedu.2014.11.023.
    [21] L. Feisel, A. R.-J. of engineering Education, and undefined 2005, “The role of the laboratory in undergraduate engineering education,” Wiley Online Library, vol. 121, no. 1, pp. 121–130, 2005, doi: 10.1002/j.2168-9830.2005.tb00833.x.
    [22] M. Ardid, J. A. Gómez-Tejedor, J. M. Meseguer-Dueñas, J. Riera, and A. Vidaurre, “Online exams for blended assessment. Study of different application methodologies,” Comput Educ, vol. 81, pp. 296–303, 2015, doi: 10.1016/j.compedu.2014.10.010.
    [23] K. K. Hollister and M. L. Berenson, “Proctored Versus Unproctored Online Exams: Studying the Impact of Exam Environment on Student Performance,” Decision Sciences Journal of Innovative Education, vol. 7, no. 1, pp. 271–294, Jan. 2009, doi: 10.1111/J.1540-4609.2008.00220.X.
    [24] T. L. Kelley, “The selection of upper and lower groups for the validation of test items.,” psycnet.apa.org, 1939, Accessed: Jan. 16, 2023. [Online]. Available: https://psycnet.apa.org/record/1939-03313-001
    [25] J. Sweller, P. Ayres, and S. Kalyuga, “Cognitive Load Theory,” 2011, doi: 10.1007/978-1-4419-8126-4.
    [26] APhO, “APhO2022,” 2022. [線上]. Available: https://apho2022.in/apho_MBB/.
    [27] IPhO, “IPhO Problems and Solutions,” 2011~2019. [線上]. Available: https://physprob.com/.

    下載圖示 校內:2025-08-08公開
    校外:2025-08-08公開
    QR CODE