| 研究生: |
孫盟棊 Sun, Meng-Chi |
|---|---|
| 論文名稱: |
人類血纖維蛋白酶原片段Kringle透過黏著斑激酶訊息路徑提升內皮細胞移動能力 Kringle Protein Enhances Endothelial Cell Motility through FAK Signaling Pathway |
| 指導教授: |
吳華林
Wu, Hua-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 人類血纖維蛋白酶原片段 、黏著斑激酶 |
| 外文關鍵詞: | kringle, FAK |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
人類血管靜止蛋白及血纖維蛋白溶酶原kringle片段已被證實可以藉由影響內皮細胞的爬行與增生而抑制血管新生。我們實驗室先前的研究中發現,kringle1-5 (K1-5)蛋白會引發人類凝血酶調節素(TM)內吞並分解,且TM可能在細胞與細胞間及細胞與基質間的連結中扮演重要的角色。然而,K1-5干擾內皮細胞爬行的機制尚不清楚。在本論文中,我們利用酵母菌表現的kringle蛋白來探討這個機制。根據長時間活細胞螢光影像擷取所得到的數據發現,牛動脈內皮細胞經K1-5處理之後其能動性上升,但傷口閉合的速率減慢。這個有趣的現象促使我們想要更進一步探討K1-5是如何去影響內皮細胞的爬行。首先我們發現K1-5會引起黏著斑激酶(FAK)在Y397及Y576這兩個胺基酸位置上的磷酸化,這暗示著FAK訊息傳遞路徑的活化。接著我們也證明FAK訊息傳遞路徑下游影響黏著斑拆解的paxillin及ERK亦被活化。根據這些結果我們認為K1-5藉由活化FAK訊息傳遞路徑而提高內皮細胞的能動性,同時卻又引發TM內吞而阻礙了細胞具有方向性的移動。另一方面我們也發現FAK訊息傳遞路徑下游的Akt與IκB-α磷酸化,並連同ERK一起調控細胞生存。
Abstract
The angiostatin and kringles fragments of plasminogen have been identified as an inhibitor of angiogenesis by suppressing endothelial cell migration and proliferation. In our previous studies, we found that kringle1-5 (K1-5) induced thrombomodulin (TM) internalization and degradation while TM might play an important role in the cell-cell and cell-matrix adhesion. However, the mechanism of K1-5 interfering endothelial cell migration still remained unclear. In this study, we used Pichia pastoris expressed kringle protein to verify the mechanism. According to data captured by time lapse video-microscopy, we found that the motility of bovine aortic endothelial cell treated with recombinant K1-5 protein increased, but the rate of wound closure decreased. This interesting phenomenon prompted us to investigate how K1-5 influenced endothelial cell migration. First, we found that K1-5 induced phosphorylation of focal adhesion kinase (FAK) on residues Y397 and Y576 which implicated the activation of FAK signal pathway. Then we illustrated the activation of paxillin and ERK which had been identified as downstream of FAK signal pathway that regulate focal adhesion disassembly. Based on these results, we suggested that K1-5 enhanced endothelial cell motility by activating FAK signaling pathway while impeded directional cell migration by inducing TM internalization. On the other hand, we also found that the phosphorylation of FAK downstream, Akt and IκB-α, along with ERK modulated cell survival.
References
1. Folkman, J. 1990. What is the evidence that tumors are angiogenesis dependent? Journal of the National Cancer Institute 82:4-6.
2. Dvorak, H. F., J. A. Nagy, J. T. Dvorak, and A. M. Dvorak. 1988. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. The American journal of pathology 133:95-109.
3. Folkman, J. 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature medicine 1:27-31.
4. Carmeliet, P. 2003. Angiogenesis in health and disease. Nature medicine 9:653-660.
5. Pandya, N. M., N. S. Dhalla, and D. D. Santani. 2006. Angiogenesis--a new target for future therapy. Vascular pharmacology 44:265-274.
6. O'Reilly, M. S., L. Holmgren, C. Chen, and J. Folkman. 1996. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature medicine 2:689-692.
7. Gately, S., P. Twardowski, M. S. Stack, D. L. Cundiff, D. Grella, F. J. Castellino, J. Enghild, H. C. Kwaan, F. Lee, R. A. Kramer, O. Volpert, N. Bouck, and G. A. Soff. 1997. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proceedings of the National Academy of Sciences of the United States of America 94:10868-10872.
8. Cornelius, L. A., L. C. Nehring, E. Harding, M. Bolanowski, H. G. Welgus, D. K. Kobayashi, R. A. Pierce, and S. D. Shapiro. 1998. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol 161:6845-6852.
9. Soff, G. A. 2000. Angiostatin and angiostatin-related proteins. Cancer metastasis reviews 19:97-107.
10. O'Reilly, M. S., L. Holmgren, Y. Shing, C. Chen, R. A. Rosenthal, M. Moses, W. S. Lane, Y. Cao, E. H. Sage, and J. Folkman. 1994. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315-328.
11. Gately, S., P. Twardowski, M. S. Stack, M. Patrick, L. Boggio, D. L. Cundiff, H. W. Schnaper, L. Madison, O. Volpert, N. Bouck, J. Enghild, H. C. Kwaan, and G. A. Soff. 1996. Human prostate carcinoma cells express enzymatic activity that converts human plasminogen to the angiogenesis inhibitor, angiostatin. Cancer research 56:4887-4890.
12. Claesson-Welsh, L., M. Welsh, N. Ito, B. Anand-Apte, S. Soker, B. Zetter, M. O'Reilly, and J. Folkman. 1998. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proceedings of the National Academy of Sciences of the United States of America 95:5579-5583.
13. Hanks, S. K., L. Ryzhova, N. Y. Shin, and J. Brabek. 2003. Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front Biosci 8:d982-996.
14. Parsons, J. T. 2003. Focal adhesion kinase: the first ten years. Journal of cell science 116:1409-1416.
15. Cox, B. D., M. Natarajan, M. R. Stettner, and C. L. Gladson. 2006. New concepts regarding focal adhesion kinase promotion of cell migration and proliferation. Journal of cellular biochemistry 99:35-52.
16. Hynes, R. O. 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110:673-687.
17. Schaller, M. D., J. D. Hildebrand, J. D. Shannon, J. W. Fox, R. R. Vines, and J. T. Parsons. 1994. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Molecular and cellular biology 14:1680-1688.
18. Calalb, M. B., T. R. Polte, and S. K. Hanks. 1995. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Molecular and cellular biology 15:954-963.
19. Thomas, S. M., and J. S. Brugge. 1997. Cellular functions regulated by Src family kinases. Annual review of cell and developmental biology 13:513-609.
20. Webb, D. J., K. Donais, L. A. Whitmore, S. M. Thomas, C. E. Turner, J. T. Parsons, and A. F. Horwitz. 2004. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature cell biology 6:154-161.
21. Huang, D., M. Khoe, M. Befekadu, S. Chung, Y. Takata, D. Ilic, and M. Bryer-Ash. 2007. Focal adhesion kinase mediates cell survival via NF-kappaB and ERK signaling pathways. American journal of physiology 292:C1339-1352.
22. Suzuki, K., H. Kusumoto, Y. Deyashiki, J. Nishioka, I. Maruyama, M. Zushi, S. Kawahara, G. Honda, S. Yamamoto, and S. Horiguchi. 1987. Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. The EMBO journal 6:1891-1897.
23. Conway, E. M., S. Pollefeyt, D. Collen, and M. Steiner-Mosonyi. 1997. The amino terminal lectin-like domain of thrombomodulin is required for constitutive endocytosis. Blood 89:652-661.
24. Weiler-Guettler, H., W. C. Aird, H. Rayburn, M. Husain, and R. D. Rosenberg. 1996. Developmentally regulated gene expression of thrombomodulin in postimplantation mouse embryos. Development (Cambridge, England) 122:2271-2281.
25. Shi, C. S., G. Y. Shi, Y. S. Chang, H. S. Han, C. H. Kuo, C. Liu, H. C. Huang, Y. J. Chang, P. S. Chen, and H. L. Wu. 2005. Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation 111:1627-1636.
26. Huang, H. C., G. Y. Shi, S. J. Jiang, C. S. Shi, C. M. Wu, H. Y. Yang, and H. L. Wu. 2003. Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. The Journal of biological chemistry 278:46750-46759.
27. Tabruyn, S. P., and A. W. Griffioen. 2007. Molecular pathways of angiogenesis inhibition. Biochemical and biophysical research communications 355:1-5.
28. Dixelius, J., M. Cross, T. Matsumoto, T. Sasaki, R. Timpl, and L. Claesson-Welsh. 2002. Endostatin regulates endothelial cell adhesion and cytoskeletal organization. Cancer research 62:1944-1947.
29. Wahl, M. L., C. S. Owen, and D. S. Grant. 2002. Angiostatin induces intracellular acidosis and anoikis in endothelial cells at a tumor-like low pH. Endothelium 9:205-216.
30. Troyanovsky, B., T. Levchenko, G. Mansson, O. Matvijenko, and L. Holmgren. 2001. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. The Journal of cell biology 152:1247-1254.
31. Tarui, T., M. Majumdar, L. A. Miles, W. Ruf, and Y. Takada. 2002. Plasmin-induced migration of endothelial cells. A potential target for the anti-angiogenic action of angiostatin. The Journal of biological chemistry 277:33564-33570.
32. Seidler, J., R. Durzok, C. Brakebusch, and N. Cordes. 2005. Interactions of the integrin subunit beta1A with protein kinase B/Akt, p130Cas and paxillin contribute to regulation of radiation survival. Radiother Oncol 76:129-134.
33. Sharma, M. R., G. P. Tuszynski, and M. C. Sharma. 2004. Angiostatin-induced inhibition of endothelial cell proliferation/apoptosis is associated with the down-regulation of cell cycle regulatory protein cdk5. Journal of cellular biochemistry 91:398-409.
34. Gupta, N., E. Nodzenski, N. N. Khodarev, J. Yu, L. Khorasani, M. A. Beckett, D. W. Kufe, and R. R. Weichselbaum. 2001. Angiostatin effects on endothelial cells mediated by ceramide and RhoA. EMBO reports 2:536-540.
校內:2106-07-27公開