簡易檢索 / 詳目顯示

研究生: 郭聖嘉
Kuo, Sheng-Jia
論文名稱: 南台灣奈米微粒粒徑分佈與成長特性分析
Size Distributions and Formation Mechanisms of Nanoparticles in the Southern Taiwan
指導教授: 吳義林
Wu, Yee-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 228
中文關鍵詞: 粒徑分布奈米微粒成長定律成長速率奈米微粒連續監測儀
外文關鍵詞: Size distribution, Nanoparticle, Growth rate, Growth law, SMPS+C MDMA
相關次數: 點閱:164下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為探討南台灣地區奈米微粒粒徑分布與成長機制,本研究主要以南部懸浮微粒超級測站中之2010年6月至2011年2月之奈米微粒連續監測資料與其他氣象資料、氣固相汙染物資料進行奈米微粒之形成與成長機制分析。
    研究方法主要以粒徑分布與顆粒濃度之變化篩分,並以波峰分離法處理後針對其成長速率與成長定律分析,針對其結果進行事件之歸類,依照其波峰變化類型之比例定義為:濃度增加粒徑增加、濃度增加粒徑減少、濃度減少粒徑增加、濃度減少粒徑減少與其他等五項類型。而成長機制分析結果濃度增加粒徑增加之類型主要相關汙染物為NOx、CO、BC、NH3相關,因此研判主要來源為交通源、工業源直接排放,而具明顯粒徑與濃度變化之其他類事件主要與NH3相關,由分析結果指出初期成核之微粒成長與交通源排放之揮發性有機物相關,而微粒濃度達最高後粒徑成長之機制轉為凝結機制為主導。

    In order to discussion of the size distribution of nanoparticles and formation mechanism in the southern Taiwan. The southern supersite of the SMPS data and gas-solid phase pollutant data were used in this study from June 2010 to February 2011. The study focus on the nanoparticles formation and growth mechanism in the southern Taiwan.
    The research methods to determine the types of events by particle size distribution and the change of number concentration, and calculate the growth rate and growth law to analysis after data inversion. The change of particle size distribution and number concentration for the type classified as (1).The particle size and the number concentration both increase (2).The number concentration increase and the particle size decrease (3).The number concentration decrease and the particle size increase (4). The particle size and the number concentration both increase and (5).Else.
    The result of growth mechanism analysis that the particle size and the number concentration both increase type event are relate with NOx, CO, BC and NH3. Therefore, to determine the main sources of mobile source and industrial source. Significant changes in particle size and number concentration in the other types of events were selected for analysis, and the comparison results with NH3-related. Results by comparison, the initial nucleation of the nanoparticles growth rate and Mobile source emissions of volatile organic compounds are related. After reached the highest particle number concentration, coagulation mechanism leading the growth of nanoparticles.

    圖目錄 IV 表目錄 VI 第一章、緒論 1 1-1、 研究緣起 1 1-2、 研究目的 2 1-3、 研究架構 2 第二章、 文獻回顧 5 2-1、大氣中氣膠之特性 5 2-1-1、氣膠之定義 5 2-1-2、粒徑分佈之描述 5 2-1-3、力矩平均 8 2-1-4、加權分佈 9 2-1-5、對數常態分佈 11 2-2、粒徑成長速率 18 2-2-1、粒徑成長速率理論背景 18 2-2-2、粒徑成長速率之特性 20 2-3、成長定律 21 2-4、美國環保署超級測站與奈米微粒相關文獻 24 2-4-1、美國超級測站簡介 24 2-4-2、研究結果 25 2-5、奈米微粒形成與成長機制 28 第三章、研究方法 31 3-1、工作背景 31 3-2、分析物種與使用儀器 31 3-2-1、奈米微粒粒徑分佈監測儀 32 3-2-2、硝酸鹽監測儀 33 3-2-3、硫酸鹽監測儀 33 3-2-4、元素碳/有機碳監測儀 34 3-2-5、一氧化碳監測儀 34 3-2-6、臭氧監測儀 34 3-2-7、氮氧化物監測儀 35 3-3、品保與品管作業 36 3-4、工作方法 37 3-4-1、事件篩選法則 37 3-4-2、波峰分離法 38 3-4-3、事件風速篩選 39 第四章、 結果與討論 41 4-1、奈米微粒事件篩選 41 4-1-1、奈米微粒濃度逐月變化 41 4-1-2、事件篩選結果 43 4-2、奈米微粒成長速率與成長定律分析 49 4-2-1、成長速率 49 4-2-2、成長定律分析 51 4-2-3、濃度增加且粒徑分布增加事件類型之成長定律分析 52 4-2-4、其他類型之成長定律分析 53 4-2-5、影響成長定律成長因子 55 4-3、事件機制探討 56 4-3-1、濃度增加粒徑增加類型 56 4-3-2、其他類型 69 4-3-3、成長機制探討 72 4-3-4、以顆粒濃度與體積濃度解析 76 第五章、 結論與建議 81 5-1、研究結論 81 5-2、建議 82 附錄A 91 附錄B 163 附錄C 168 附錄D 179 圖目錄 圖 1 1、研究架構圖 3 圖 2 1、對數常態微粒粒徑頻率分佈函數。(王秋森,1992) 16 圖 2 2、繪於粒徑對數一機率尺度的對數常態微粒粒徑頻率分佈函數。(王秋森,1992) 16 圖 2 3、對數常態粒徑分佈函數與粒徑對數一機率尺度的微粒粒徑分佈描述 17 圖 2 4、大於粒徑 之微粒數量濃度 與 之關係圖(摘自MCMURRY, 1982) 20 圖 2 5、成長定律模式圖(摘自MCMURRY, 1982) 23 圖 2 6、成長後之質量粒徑分佈(摘自SEINFELD, 1998) 24 圖 3 1、懸浮微粒超級測站位置圖 31 圖 4 1、篩選之逐月事件數 41 圖 4 2、逐月濃度變化圖 42 圖 4 3、逐月各粒徑區間占總濃度百分比 42 圖 4 4、濃度漸增粒徑漸增類型各事件轉折點彙整 53 圖 4 5、其他類型事件高濃度前之臨界點彙整 54 圖 4 6、其他類型事件高濃度後之臨界點彙整 54 圖 4 7、其他類型事件(2/28)高濃度前之臨界點彙整 55 圖 4 8、其他類型事件(2/28)高濃度後之臨界點彙整 55 圖 4 9、濃度漸增粒徑漸增類型事件詳細比對資料 59 圖 4 10、11/4與11/10風花圖 69 圖 4 11、其他類型事件詳細比對資料 71 圖 4 12、2010/9/3最高濃度前之分離濃度與粒徑關係圖 72 圖 4 13、NH3濃度對分離濃度比對圖 74 圖 4 14、NH3濃度達15PPBV前與分離濃度比對圖 75 圖 4 15、NH3濃度達15PPBV後與分離濃度比對圖 75 圖 4 16、NH3濃度對特徵粒徑比對圖 75 圖4-17、9/3體積濃度分布 77 表目錄 表 2 1、不同 Q 次加權與 R 次方力矩平均粒徑所代表的物理意義 11 表 2 2、氣膠潮解濕度表(摘自TANG, 1980) 21 表 2 3、微粒之理論成長定律(摘自MCMURRY, 1982) 23 表 3 1、輔英超級測站儀器型號與分析物種 32 表 4 1、數量濃度與粒徑變化逐時分佈圖事件篩選定義 46 表 4 2、第一步驟篩選事件結果統計 47 表 4 3、篩選後之事件總表 48 表 4 4、各類型事件成長速率與粒徑回歸式 50 表 4 5、事件比對結果彙整 58 表 4 6、國外文獻資料監測物種比對 79

    Ball S. M., Hanson D. R., Eisele F. L., McMurry P. H.,. Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors, J Geophys Res-Atmos 104(D19): 23709-23718, 1999.

    Berresheim H., Elste T., Tremmel H. G., Allen A. G., Hansson H. C., Rosman K., Gas-aerosol relationships of H2SO4, MSA, and OH: Observations in the coastal marine boundary layer at Mace Head, Ireland, J Geophys Res-Atmos 107(D19), 2002.

    Birmili W., Berresheim H., Plass-Dulmer C., Elste T., Gilge S., Wiedensohler A., The Hohenpeissenberg aerosol formation experiment (HAFEX): a long-term study including size-resolved aerosol, H2SO4, OH, and monoterpenes measurements, Atmos Chem Phys 3: 361-376, 2003.

    Birmili W., Wiedensohler A., Plass-Dulmer C., Berresheim H., Evolution of newly formed aerosol particles in the continental boundary layer: A case study including OH and H2SO4 measurements, Geophys Res Lett 27(15): 2205-2208, 2000.

    Eisele F. L., Lovejoy E. R., Kosciuch E., Moore K.F., Mauldin R.L., Smith J.N., Negative atmospheric ions and their potential role in ion-induced nucleation, J Geophys Res-Atmos 111(D4), 2006.

    Fiedler V., Dal Maso M., Boy M., Aufmhoff H., Hoffmann J., Schuck T., The contribution of sulphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe, Atmos Chem Phys 5: 1773-1785, 2005.

    Heisler S.L., Friedlander S.K., Gas-to-Particle Conversion in Photochemical Smog - Aerosol Growth Laws and Mechanisms for Organics, Atmos Environ 11(2): 157-168, 1977.

    Kuang C., McMurry P.H., Dependence of nucleation rates on sulfuric acid vapor concentration in diverse atmospheric locations, J Geophys Res-Atmos 115, 2010.

    Kuang C., McMurry P.H., McCormick A.V., Eisele F.L., Dependence of nucleation rates on sulfuric acid vapor concentration in diverse atmospheric locations, J Geophys Res-Atmos 113(D10), 2008.

    Kulmala M., Korhonen P., Napari I., Karlsson A., Berresheim H., O'Dowd C.D., Aerosol formation during PARFORCE: Ternary nucleation of H2SO4, NH3, and H2O, J Geophys Res-Atmos 107(D19), 2002.

    Kulmala M., Laakso L., Lehtinen K.E.J., Riipinen I., Dal Maso M., Anttila T., Initial steps of aerosol growth, Atmos Chem Phys 4: 2553-2560, 2004.

    Kulmala M., Nieminen T., Manninen H.E., Sihto S.L., Yli-Juuti T., Mauldin R.L., Connection of Sulfuric Acid to Atmospheric Nucleation in Boreal Forest, Environ Sci Technol 43(13): 4715-4721, 2009.

    Lee S.H., Benson D.R., Erupe M.E., Laboratory-measured H(2)SO(4)-H(2)O-NH(3) ternary homogeneous nucleation rates: Initial observations, Geophys Res Lett 36, 2009.

    Li Y.Q., Schwab J.J., Demerjian K.L., Measurements of ambient ammonia using a tunable diode laser absorption spectrometer: Characteristics of ambient ammonia emissions in an urban area of New York City, J Geophys Res-Atmos 111(D10), 2006.

    Manninen H.E., Nieminen T., Riipinen I., Yli-Juuti T., Gagne S., Asmi E., Charged and total particle formation and growth rates during EUCAARI 2007 campaign in Hyytiala, Atmos Chem Phys 9(12): 4077-4089, 2009.

    Mcmurry P.H., Wilson J.C., Growth Laws for the Formation of Secondary Ambient Aerosols - Implications for Chemical Conversion Mechanisms, Atmos Environ 16(1): 121-134, 1982.

    McMurry P.H., Woo K.S., Weber R., Chen D.R., Pui D.Y.H., Size distributions of 3-10 nm atmospheric particles: implications for nucleation mechanisms, Philos T Roy Soc A 358(1775): 2625-2642, 2000.

    Merikanto J., Napari I., Vehkamaki H., Anttila T., Kulmala M, New parameterization of sulfuric acid-ammonia-water ternary nucleation rates at tropospheric conditions, J Geophys Res-Atmos 112(D15), 2007.

    Molnar P., Janhall S., Hallquist M., Roadside measurements of fine and ultrafine particles at a major road north of Gothenburg, Atmos Environ 36(25): 4115-4123, 2002.
    Napari I., Noppel M., Vehkamaki H., Kulmala M., An improved model for ternary nucleation of sulfuric acid-ammonia-water, J Chem Phys 116(10): 4221-4227, 2002.

    Paasonen P., Sihto S.L., Nieminen T., Vuollekoski H., Riipinen I., Plass-Dulmer C., Connection between new particle formation and sulphuric acid at Hohenpeissenberg (Germany) including the influence of organic compounds, Boreal Environ Res 14(4): 616-629, 2009.

    Paris J.D., Arshinov M.Y., Ciais P., Belan B.D., Nedelec P., Large-scale aircraft observations of ultra-fine and fine particle concentrations in the remote Siberian troposphere: New particle formation studies, Atmos Environ 43(6): 1302-1309, 2009.

    Petaja T., Mauldin R.L., Kosciuch E., McGrath J., Nieminen T., Paasonen P., Sulfuric acid and OH concentrations in a boreal forest site, Atmos Chem Phys 9(19): 7435-7448, 2009.

    Riipinen I., Sihto S.L., Kulmala M., Arnold F., Dal Maso M., Birmili W., Connections between atmospheric sulphuric acid and new particle formation during QUEST III-IV campaigns in Heidelberg and Hyyti, Atmos Chem Phys 7(8): 1899-1914, 2007.

    Scott W.D., Cattell F.C.R, Vapor-Pressure of Ammonium Sulfates, Atmos Environ 13(2): 307-317, 1979.

    Sihto S.L., Kulmala M., Kerminen V.M., Dal Maso M., Petaja T., Riipinen I., Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms, Atmos Chem Phys 6: 4079-4091, 2006.

    Smith J.N., Dunn M.J., VanReken T.M., Iida K., Stolzenburg M.R., McMurry P.H., Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an important role for organic species in nanoparticle growth, Geophys Res Lett 35(4), 2008.

    Tuch T., Brand P., Wichmann H.E., Heyder J., Variation of particle number and mass concentration in various size ranges of ambient aerosols in Eastern Germany, Atmos Environ 31(24): 4193-4197, 1997.

    Wahlin P., Palmgren F., Van Dingenen R., Experimental studies of ultrafine particles in streets and the relationship to traffic, Atmos Environ 35: S63-S69, 2001.

    Watson J.G., Chow J.C., Lowenthal D.H., Stolzenburg M.R., Kreisberg N.M., Hering S.V., Particle size relationships at the Fresno supersite, J Air Waste Manage 52(7): 822-827, 2002.

    Watson J.G., Chow J.C., Park K., Lowenthal D.H., Park K., Nanoparticle and ultrafine particle events at the Fresno Supersite, J Air Waste Manage 56(4): 417-430, 2006.

    Weber R.J., Marti J.J., McMurry P.H., Eisele F.L., Tanner DJ, Jefferson A., Measured atmospheric new particle formation rates: Implications for nucleation mechanisms, Chem Eng Commun 151: 53-64, 1996.

    Weber R.J., McMurry P.H., Mauldin L., Tanner D.J., Eisele F.L., Brechtel F.J., A study of new particle formation and growth involving biogenic and trace gas species measured during ACE 1, J Geophys Res-Atmos 103(D13): 16385-16396, 1998.

    Weber R.J., McMurry P.H., Mauldin R.L., Tanner D.J., Eisele F.L., Clarke A.D., New particle formation in the remote troposphere: A comparison of observations at various sites, Geophys Res Lett 26(3): 307-310, 1999.

    Wehner B., Birmili W., Gnauk T., Wiedensohler A., Particle number size distributions in a street canyon and their transformation into the urban-air background: measurements and a simple model study, Atmos Environ 36(13): 2215-2223, 2002.

    Wichmann H.E., Peters A., Epidemiological evidence of the effects of ultrafine particle exposure, Philos T Roy Soc A 358(1775): 2751-2768, 2000.

    Woo K.S., Chen D.R., Pui D.Y.H., McMurry P.H., Measurement of Atlanta aerosol size distributions: Observations of ultrafine particle events, Aerosol Sci Tech 34(1): 75-87, 2001.

    程大維,”台南地區次微米之硝酸鹽與硫酸鹽微粒的成長特性”,碩士論文,國立成功大學環境工程研究所,1996

    簡智祥,”高屏地區冬季奈米微粒分布、來源與成長特性”,碩士論文,國立成功大學環境工程研究所,2007

    行政院勞工委員會勞工安全衛生研究所,氣膠原理與應用,民國84年

    下載圖示 校內:2016-08-24公開
    校外:2016-08-24公開
    QR CODE