| 研究生: |
郭聖嘉 Kuo, Sheng-Jia |
|---|---|
| 論文名稱: |
南台灣奈米微粒粒徑分佈與成長特性分析 Size Distributions and Formation Mechanisms of Nanoparticles in the Southern Taiwan |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 228 |
| 中文關鍵詞: | 粒徑分布 、奈米微粒 、成長定律 、成長速率 、奈米微粒連續監測儀 |
| 外文關鍵詞: | Size distribution, Nanoparticle, Growth rate, Growth law, SMPS+C MDMA |
| 相關次數: | 點閱:164 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為探討南台灣地區奈米微粒粒徑分布與成長機制,本研究主要以南部懸浮微粒超級測站中之2010年6月至2011年2月之奈米微粒連續監測資料與其他氣象資料、氣固相汙染物資料進行奈米微粒之形成與成長機制分析。
研究方法主要以粒徑分布與顆粒濃度之變化篩分,並以波峰分離法處理後針對其成長速率與成長定律分析,針對其結果進行事件之歸類,依照其波峰變化類型之比例定義為:濃度增加粒徑增加、濃度增加粒徑減少、濃度減少粒徑增加、濃度減少粒徑減少與其他等五項類型。而成長機制分析結果濃度增加粒徑增加之類型主要相關汙染物為NOx、CO、BC、NH3相關,因此研判主要來源為交通源、工業源直接排放,而具明顯粒徑與濃度變化之其他類事件主要與NH3相關,由分析結果指出初期成核之微粒成長與交通源排放之揮發性有機物相關,而微粒濃度達最高後粒徑成長之機制轉為凝結機制為主導。
In order to discussion of the size distribution of nanoparticles and formation mechanism in the southern Taiwan. The southern supersite of the SMPS data and gas-solid phase pollutant data were used in this study from June 2010 to February 2011. The study focus on the nanoparticles formation and growth mechanism in the southern Taiwan.
The research methods to determine the types of events by particle size distribution and the change of number concentration, and calculate the growth rate and growth law to analysis after data inversion. The change of particle size distribution and number concentration for the type classified as (1).The particle size and the number concentration both increase (2).The number concentration increase and the particle size decrease (3).The number concentration decrease and the particle size increase (4). The particle size and the number concentration both increase and (5).Else.
The result of growth mechanism analysis that the particle size and the number concentration both increase type event are relate with NOx, CO, BC and NH3. Therefore, to determine the main sources of mobile source and industrial source. Significant changes in particle size and number concentration in the other types of events were selected for analysis, and the comparison results with NH3-related. Results by comparison, the initial nucleation of the nanoparticles growth rate and Mobile source emissions of volatile organic compounds are related. After reached the highest particle number concentration, coagulation mechanism leading the growth of nanoparticles.
Ball S. M., Hanson D. R., Eisele F. L., McMurry P. H.,. Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors, J Geophys Res-Atmos 104(D19): 23709-23718, 1999.
Berresheim H., Elste T., Tremmel H. G., Allen A. G., Hansson H. C., Rosman K., Gas-aerosol relationships of H2SO4, MSA, and OH: Observations in the coastal marine boundary layer at Mace Head, Ireland, J Geophys Res-Atmos 107(D19), 2002.
Birmili W., Berresheim H., Plass-Dulmer C., Elste T., Gilge S., Wiedensohler A., The Hohenpeissenberg aerosol formation experiment (HAFEX): a long-term study including size-resolved aerosol, H2SO4, OH, and monoterpenes measurements, Atmos Chem Phys 3: 361-376, 2003.
Birmili W., Wiedensohler A., Plass-Dulmer C., Berresheim H., Evolution of newly formed aerosol particles in the continental boundary layer: A case study including OH and H2SO4 measurements, Geophys Res Lett 27(15): 2205-2208, 2000.
Eisele F. L., Lovejoy E. R., Kosciuch E., Moore K.F., Mauldin R.L., Smith J.N., Negative atmospheric ions and their potential role in ion-induced nucleation, J Geophys Res-Atmos 111(D4), 2006.
Fiedler V., Dal Maso M., Boy M., Aufmhoff H., Hoffmann J., Schuck T., The contribution of sulphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe, Atmos Chem Phys 5: 1773-1785, 2005.
Heisler S.L., Friedlander S.K., Gas-to-Particle Conversion in Photochemical Smog - Aerosol Growth Laws and Mechanisms for Organics, Atmos Environ 11(2): 157-168, 1977.
Kuang C., McMurry P.H., Dependence of nucleation rates on sulfuric acid vapor concentration in diverse atmospheric locations, J Geophys Res-Atmos 115, 2010.
Kuang C., McMurry P.H., McCormick A.V., Eisele F.L., Dependence of nucleation rates on sulfuric acid vapor concentration in diverse atmospheric locations, J Geophys Res-Atmos 113(D10), 2008.
Kulmala M., Korhonen P., Napari I., Karlsson A., Berresheim H., O'Dowd C.D., Aerosol formation during PARFORCE: Ternary nucleation of H2SO4, NH3, and H2O, J Geophys Res-Atmos 107(D19), 2002.
Kulmala M., Laakso L., Lehtinen K.E.J., Riipinen I., Dal Maso M., Anttila T., Initial steps of aerosol growth, Atmos Chem Phys 4: 2553-2560, 2004.
Kulmala M., Nieminen T., Manninen H.E., Sihto S.L., Yli-Juuti T., Mauldin R.L., Connection of Sulfuric Acid to Atmospheric Nucleation in Boreal Forest, Environ Sci Technol 43(13): 4715-4721, 2009.
Lee S.H., Benson D.R., Erupe M.E., Laboratory-measured H(2)SO(4)-H(2)O-NH(3) ternary homogeneous nucleation rates: Initial observations, Geophys Res Lett 36, 2009.
Li Y.Q., Schwab J.J., Demerjian K.L., Measurements of ambient ammonia using a tunable diode laser absorption spectrometer: Characteristics of ambient ammonia emissions in an urban area of New York City, J Geophys Res-Atmos 111(D10), 2006.
Manninen H.E., Nieminen T., Riipinen I., Yli-Juuti T., Gagne S., Asmi E., Charged and total particle formation and growth rates during EUCAARI 2007 campaign in Hyytiala, Atmos Chem Phys 9(12): 4077-4089, 2009.
Mcmurry P.H., Wilson J.C., Growth Laws for the Formation of Secondary Ambient Aerosols - Implications for Chemical Conversion Mechanisms, Atmos Environ 16(1): 121-134, 1982.
McMurry P.H., Woo K.S., Weber R., Chen D.R., Pui D.Y.H., Size distributions of 3-10 nm atmospheric particles: implications for nucleation mechanisms, Philos T Roy Soc A 358(1775): 2625-2642, 2000.
Merikanto J., Napari I., Vehkamaki H., Anttila T., Kulmala M, New parameterization of sulfuric acid-ammonia-water ternary nucleation rates at tropospheric conditions, J Geophys Res-Atmos 112(D15), 2007.
Molnar P., Janhall S., Hallquist M., Roadside measurements of fine and ultrafine particles at a major road north of Gothenburg, Atmos Environ 36(25): 4115-4123, 2002.
Napari I., Noppel M., Vehkamaki H., Kulmala M., An improved model for ternary nucleation of sulfuric acid-ammonia-water, J Chem Phys 116(10): 4221-4227, 2002.
Paasonen P., Sihto S.L., Nieminen T., Vuollekoski H., Riipinen I., Plass-Dulmer C., Connection between new particle formation and sulphuric acid at Hohenpeissenberg (Germany) including the influence of organic compounds, Boreal Environ Res 14(4): 616-629, 2009.
Paris J.D., Arshinov M.Y., Ciais P., Belan B.D., Nedelec P., Large-scale aircraft observations of ultra-fine and fine particle concentrations in the remote Siberian troposphere: New particle formation studies, Atmos Environ 43(6): 1302-1309, 2009.
Petaja T., Mauldin R.L., Kosciuch E., McGrath J., Nieminen T., Paasonen P., Sulfuric acid and OH concentrations in a boreal forest site, Atmos Chem Phys 9(19): 7435-7448, 2009.
Riipinen I., Sihto S.L., Kulmala M., Arnold F., Dal Maso M., Birmili W., Connections between atmospheric sulphuric acid and new particle formation during QUEST III-IV campaigns in Heidelberg and Hyyti, Atmos Chem Phys 7(8): 1899-1914, 2007.
Scott W.D., Cattell F.C.R, Vapor-Pressure of Ammonium Sulfates, Atmos Environ 13(2): 307-317, 1979.
Sihto S.L., Kulmala M., Kerminen V.M., Dal Maso M., Petaja T., Riipinen I., Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms, Atmos Chem Phys 6: 4079-4091, 2006.
Smith J.N., Dunn M.J., VanReken T.M., Iida K., Stolzenburg M.R., McMurry P.H., Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an important role for organic species in nanoparticle growth, Geophys Res Lett 35(4), 2008.
Tuch T., Brand P., Wichmann H.E., Heyder J., Variation of particle number and mass concentration in various size ranges of ambient aerosols in Eastern Germany, Atmos Environ 31(24): 4193-4197, 1997.
Wahlin P., Palmgren F., Van Dingenen R., Experimental studies of ultrafine particles in streets and the relationship to traffic, Atmos Environ 35: S63-S69, 2001.
Watson J.G., Chow J.C., Lowenthal D.H., Stolzenburg M.R., Kreisberg N.M., Hering S.V., Particle size relationships at the Fresno supersite, J Air Waste Manage 52(7): 822-827, 2002.
Watson J.G., Chow J.C., Park K., Lowenthal D.H., Park K., Nanoparticle and ultrafine particle events at the Fresno Supersite, J Air Waste Manage 56(4): 417-430, 2006.
Weber R.J., Marti J.J., McMurry P.H., Eisele F.L., Tanner DJ, Jefferson A., Measured atmospheric new particle formation rates: Implications for nucleation mechanisms, Chem Eng Commun 151: 53-64, 1996.
Weber R.J., McMurry P.H., Mauldin L., Tanner D.J., Eisele F.L., Brechtel F.J., A study of new particle formation and growth involving biogenic and trace gas species measured during ACE 1, J Geophys Res-Atmos 103(D13): 16385-16396, 1998.
Weber R.J., McMurry P.H., Mauldin R.L., Tanner D.J., Eisele F.L., Clarke A.D., New particle formation in the remote troposphere: A comparison of observations at various sites, Geophys Res Lett 26(3): 307-310, 1999.
Wehner B., Birmili W., Gnauk T., Wiedensohler A., Particle number size distributions in a street canyon and their transformation into the urban-air background: measurements and a simple model study, Atmos Environ 36(13): 2215-2223, 2002.
Wichmann H.E., Peters A., Epidemiological evidence of the effects of ultrafine particle exposure, Philos T Roy Soc A 358(1775): 2751-2768, 2000.
Woo K.S., Chen D.R., Pui D.Y.H., McMurry P.H., Measurement of Atlanta aerosol size distributions: Observations of ultrafine particle events, Aerosol Sci Tech 34(1): 75-87, 2001.
程大維,”台南地區次微米之硝酸鹽與硫酸鹽微粒的成長特性”,碩士論文,國立成功大學環境工程研究所,1996
簡智祥,”高屏地區冬季奈米微粒分布、來源與成長特性”,碩士論文,國立成功大學環境工程研究所,2007
行政院勞工委員會勞工安全衛生研究所,氣膠原理與應用,民國84年