簡易檢索 / 詳目顯示

研究生: 李柏欣
Po-Hsin, Lee
論文名稱: 探討4EBP3蛋白在人類細胞中生物功能之研究
Study on the biological function of 4E-BP3 in human cell lines
指導教授: 張敏政
Chang, Ming-Chung
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 80
中文關鍵詞: 轉譯與轉錄
外文關鍵詞: 4E-BP3
相關次數: 點閱:121下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    eIF4E在cap-dependent translation扮演一個非常重要的角色,首先辨認5’-cap mRNA再與eIF4G結合形成eIF4F的複合體,進一步調控轉譯作用的進行;4E-BPs會與eIF4G競爭與eIF4E結合的位置,使得cap-mRNA無法帶入43S pre-initiation complex,因而抑制轉譯作用的速率,對於細胞生長有負向調節的功能。本實驗室先前利用Yeast-Two Hybrid之方法,成功地由人類乳腺細胞基因庫中,篩選出另一個為32 kDa的replication protein A ( RPA) 次單元體RPA2,而RPA2會與4E-BP3產生交互作用。RPA為一單股DNA的結合蛋白,普遍存在於真核細胞之細胞核中,主要是由RPA1、RPA2及RPA3三個次單元體組成一穩定的複合物,且其功能除了DNA複製外,還有修補以及基因重組等生理功能。主要與單股DNA產生結合能力的為RPA1,而RPA2則是當細胞進入S phase時,會有磷酸化的現象產生,直到M phase的晚期才去磷酸。若是當細胞遭受到紫外光 (UV) 、游離輻射 (IR) 的照射,對細胞造成損傷時,RPA2則會有高度磷酸化現象的發生。在本實驗中,內生性的4E-BP3蛋白在大部分的細胞中均可以被探測到,且利用免疫沈澱的方法,確認了RPA2和4E-BP3在大部分的細胞中也都會有交互作用的現象,由結果顯示,RPA2和4E-BP3的交互作用發生在細胞核以及細胞質。當細胞處於飢餓(starvation)狀態超過24小時後,4E-BP3的磷酸化有明顯減少的現象,且RPA2/4E-BP3複合體交互作用的現象也有很明顯的增加;在RPA2/4E-BP3複合體增加的同時,4E-BP3和eIF4E的交互作用也伴隨著減少。以m7-GTP sepharose沈澱法則可以觀察到RPA2/4E-BP3在細胞內的交互作用也包含 eIF4E的存在。當細胞利用曝照UV的刺激模式實驗中,細胞經UV刺激後兩個小時後,RPA2和4E-BP3的交互作用很明顯減少的現象,同時也觀察到高度磷酸化的RPA2以及磷酸化的4E-BP3有很明顯的增加。先前實驗室對於RPA2/4E-BP3複合體的研究發現,4E-BP3與RPA2產生交互作用的位置是位於RPA2 N端磷酸化的區域,且在過度表現4E-BP3的細胞中,觀察到細胞的生長速率有明顯下降的現象。在本實驗結果中,成功的篩選出有效的4E-BP3核醣核酸干擾引子,可以將內生性的4E-BP3 knockdown,且RPA2/4E-BP3複合體也很明顯的減少;在處理4E-BP3 siRNA的細胞組別中,經UV刺激後,高度磷酸化RPA2的量也有很明顯的增加。最後將細胞進行同步化的實驗,可以觀察到4E-BP3先磷酸化後,RPA2/4E-BP3複合體分開,隨之RPA2也有磷酸化的產生。4E-BP3利用磷酸化的作用機制影響RPA2的磷酸化,進一步影響了細胞生長速率。

    Abstract

    Eukaryotic translation initiation factor 4E (eIF4E) binds to the mRNA cap structure and interacts with eIF4G to form the eIF4F complex to regulate protein synthesis. The 4E-BPs (eukaryotic initiation factor 4E-binding proteins) are able to compete with eIF4G for binding to eIF4E and repress cap-dependent translation. Previously, using the yeast-two hybrid method, we found that the RPA2 interacted with the 4E-BP3, a member of 4E-BPs family. RPA is replication protein A, and it is a single-stranded DNA binding protein. The RPA is a complex of three subunits including RPA1 (70 kDa), RPA2 (32 kDa) and RPA3 (14 kDa). The complex also functions in DNA repair and recombination. The primary ssDNA binding domain is localized to the RPA1. However, RPA2 is phosphorylated in a cell cycle dependent manner and is additionally phosphorylated in response to DNA damage. Hyper-phosphorylation of RPA2 occurs in response to DNA-damaging agents, such as UV or IR treatment. In this study, the endogenous 4E-BP3 could be detected in various cells and the 4E-BP3 associated with the RPA2 was confirmed in these cell lines by immuno-precipitation assay. The result shows that the RPA2/4E-BP3 complex was detected in both the nuclear and cytoplasm fractions. When cultivated cell was starvated for over 24hr, phosphorylation form of 4E-BP3 decreased and the protein levels of RPA2/4E-BP3 complex significantly increased. Increased the RPA2-4E-BP3 complex coincide with dissociation of eIF4E from 4E-BP3. m7-GTP sepharose pull down assay showed that the complex of RPA2 and 4E-BP3 contain eIF4E. In UV-stimulated experiments, when HEK293T cell was treated with 50 J/m2 of UV, the dissociation of RPA2 and 4E-BP3 was detected at 2 hours, and the phosphorylated forms of RPA2 and 4E-BP3 were also detected after 2 hours. Previously, the binding area of RPA2 with 4E-BP3 located within phosphorylation domain of RPA2, and the proliferation rate of the stable clone of 4E-BP3 cell decreased by 50%. To investigate the phosphorylated of RPA2 could be influenced or not by the 4E-BP3, the mutant forms and siRNA of 4E-BP3 were performed. The result shows that the 4E-BP3 siRNA specifically knockdown the endogenous 4E-BP3 and the RPA2-4E-BP3 complex significantly decreased. When the endogenous 4E-BP3 was knockdown by 4E-BP3 siRNA, the Hyper-phosphorylated form of RPA2 significantly increased after 50 J/m2 of UV. But the amounts of hyper-phosphoryaltion forms of RPA2 also increased in HEK293T cell containing exogenous mutant forms of 4E-BP3. With the treatment of aphidicolin, the RPA2 was hypo-phosphorylated after the complex of RPA2/4E-BP3 would be dissociated in HEK293T. The regulation of cell proliferation rate is contributed to the RPA2 phosphorylation by 4E-BP3.

    目錄 中文摘要………………………………………………………………………..I 英文摘要……………………………………………………………………...III 誌謝……………………………………………………………………………V 目錄…………………………………………………………………………..VII 圖目錄………………………………………………………………………....X 附錄目錄……………………………………………………………………..XII 縮寫檢索表………………………………………………………………....XIII 第一章 序論…………………………………………………………………...1 1-1 Eukaryotic translation initiation factor 4E……………………………1 1-2 eIF4E binding protein………………………………………………...3 1-3 Replication protein A…………………………………………………7 1-4 研究動機…………………………………………………………….11 第二章 材料與方法………………………………………………………….13 2-1 使用之菌珠、載體及培養基……………………………………….13 2-2 質體DNA在大腸桿菌的轉型作用…………………………….…14 2-3 少量質體DNA的抽取…………………………...………………..15 2-4 細胞解凍…………………………….……………………………..16 2-5 細胞繼代培養(附著型細胞adherent cell)………………………..17 2-6 細胞數目測定……………………………..……………………….18 2-7 細胞保存………………………………………………..………….18 2-8 轉染(transfection)質體至細胞中…………………………………19 2-9 收取細胞(harvesting cell lysate)………………………..……..….20 2-10 細胞核內蛋白質的萃取………………………………………...…21 2-11 蛋白質濃度的定量………………………………..……………….21 2-12 SDS-APGE之蛋白分子量分析………………………………..….22 2-13 西方點墨法(western blotting)…………………………………….24 2-14 共同免疫沉澱(co-immuno-precipitation)………………….…..…26 2-15 m7-GTP sepharose pull down…………………...………………….27 2-16 UV照射……………………………………………………………28 2-17 多珠抗體的製備(preparation of polyclonal antibody)…………...29 2-18 使用之細胞株……………………………………………………...29 2-19 核醣核酸干擾引子的轉染………………………………………...29 第三章 結果………………………………………………………………….31 3-1 4E-BP3與RPA2在不同細胞珠的交互作用……………………….31 3-2 4E-BP3與複製蛋白RPA2之間的關聯性………………………….31 3-3 利用定點突變法探討4E-BP3磷酸化狀態對於eIF4E及RPA2交互作用之影響………………………………………………………….32 3-4 EIF4E/4E-BP3複合體與複製蛋白RPA2之間的關聯性………….33 3-5 UV曝照細胞之刺激模式影響RPA2及4E-BP3磷酸化情形以及RPA2/4E-BP3之交互作用………………………………………….34 3-6 利用RNA干擾技術觀察4E-BP3對RPA2磷酸化的影響………...35 3-7 利用定點突變法探討4E-BP3磷酸化狀態對於RPA2磷酸化之影響…………………………………………………………………….36 3-8 將細胞同步化觀察RPA2及4E-BP3磷酸化情形以及RPA2與4E-BP3交互作用…………………………………………………...37 第四章 討論………………………………………………………………….39 參考文獻……………………………………………………………………...43 圖表…………………………………………………………………………...53 附錄…………………………………………………………………………...74 自述…………………………………………………………………………...80

    參考文獻

    Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177-96, 2001
    Abramova NA, Russell J, Botchan M, Li R. Interaction between replication protein A and p53 is disrupted after UV damage in a DNA repair-dependent manner. Proc. Natl. Acad. Sci. USA 94, 7186-7191, 1997
    Adachi Y, Laemmli UK. Identification of nuclear pre-replication centers poised for DNA synthesis in Xenopus egg extracts: immunolocalization study of replication protein. A. J. Cell Biol. 119, 1-15, 1992
    Barr SM, Leung CG, Chang EE, Cimprich KA. ATR kinase activity regulates the intranuclear translocation of ATR and RPA following ionizing radiation. Curr Biol. 13, 1047-51, 2003
    Binz SK, Lao Y, Lowry DF, Wold MS. The phosphorylation domain of the 32-kDa subunit of replication protein A (RPA) modulates RPA-DNA interactions. Evidence for an intersubunit interaction. J Biol Chem. 278, 35584-91, 2003
    Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 4, 335-48, 2004
    Blackwell LJ, Borowiec JA, Masrangelo IA. Single-stranded DNA binding alters human replication protein A structure and facilitates interaction with DNA-dependent protein kinase. Mol. Cell. Biol. 16, 4798-4806, 1996
    Bochkarev A, Bochkareva E, Frappier L, Edwards AM. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J. 18, 4498-4504, 1999
    Brush GS, Anderson CW, Kelly TJ. The DNA-activated protein kinase is required for the phosphorylation of replication protein A during simian virus 40 DNA replication. Proc. Natl. Acad. Sci. USA 91, 12520-12524, 1994
    Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence JC Jr, Abraham RT. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science. 277, 99-101, 1997
    Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC Jr, Abraham RT. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J. 15, 5256-5267, 1996
    Cardoso MC, Leonhardt H, Nadal-Ginard B. Reversal of terminal differentiation and control of DNA replication: cyclin A and Cdk2 specifically localize at subnuclear sites of DNA replication. Cell 74, 979-792, 1993
    Carty MP, Levine AS, Dixon K. HeLa cell single-stranded DNA-binding protein increases the accuracy of DNA synthesis by DNA polymerase alpha in vitro. Mutat Res. 274, 29-43, 1992
    Chen T, Wang LH, Farrar WL. Interlukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res. 60, 2132-35, 2000
    Chung TD, Yu JJ, Kong TA, Spiotto MT, Lin JM. Interlukin-6 activates phosphatidylinositol-3 kinase, which inhibits apoptosis in human prostate cancer cell lines. Prostate. 42, 1-7, 2000
    Clemens MJ. Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins. J Cell Mol Med. 5, 221-39, 2001
    Clemens MJ. Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene. 23, 3180-8, 2004
    Cohen N, Sharma M, Kentsis A, Perez JM, Strudwick S, Borden KL. PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. EMBO J. 20, 4547-59, 2001
    Daughdrill GW, Ackerman J, Isern NG, Botuyan MV, Arrowsmith C, Wold MS, Lowry DF. The weak interdomain coupling observed in the 70 kDa subunit of human replication protein A is unaffected by ssDNA binding. Nucleic Acids Res. 29, 3270-6, 2001
    De Benedetti A, Harris AL. eIF4E expression in tumors: its possible role in progression of malignancies. Int. J. Biochem. Cell Biol. 31, 59-72, 1999
    Din S, Brill SJ, Fairman MP, Stillman B. Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev. 4, 968-977, 1990
    Dutta A, Stillman B. Cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J. 11, 2189-2199, 1992
    Fadden P, Haystead TA, Lawrence JC Jr. Identification of phosphorylation sites in the translational regulator, PHAS-I, that are controlled by insulin and rapamycin in rat adipocytes. J Biol Chem. 272, 10240-7, 1997
    Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol. 24, 200-16, 2004
    Fleurent M, Gingras AC, Sonenberg N, Meloche S. Angiotensin II stimulates phosphorylation of the translational repressor 4E-binding protein 1 by a mitogen-activated protein kinase-independent mechanism. J. Biol. Chem. 272, 4006-4012, 1997
    Foukas LC, Shepherd PR. eIF4E binding protein 1 and H-Ras are novel substrates for the protein kinase activity of class-I phosphoinositide 3-kinase. Biochem Biophys Res Commun. 319, 541-9, 2004
    Georgaki A, Hubscher U. DNA unwinding by replication protein A is a property of the 70 kDa subunit and is facilitated by phosphorylation of the 32 kDa subunit. Nucleic Acids Res. 21, 3659-3665, 1993
    Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway. Genes Dev. 12, 502-13, 1998
    Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 13, 1422-1437, 1999
    Gingras AC. Raught B. Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913-963, 1999
    Graves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, Lin TA, Lawrence JC Jr. cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc. Natl. Acad. Sci. USA 92, 7222-7226, 1995
    Gomes XV, Wold MS. Structural analysis of human replication protein A. Mapping functional domains of the 70 kDa subunit. J. Biol. Chem. 270, 4534-4543, 1995
    Gomes XV, Henricksen LA, Wold MS. Proteolytic mapping of human replication protein A: evidence for multiple structural domains and a conformational change upon interaction with single-stranded DNA. Biochemistry 35, 5586-5595, 1996
    Haghighat A, Mader S, Pause A, Sonenberg N. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J. 14, 5701-5709, 1995
    Hahm B, Kim YK, Kim JH, Kim TY, Hahm B SK. Heterogeneous nuclear ribonucleoprotein L interacts with the 3' border of the internal ribosomal entry site of hepatitis C virus. J. Virol. 72, 8782-8788, 1998
    Heesom KJ, Gampel A, Mellor H, Denton RM. Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1). Curr. Biol. 11, 1374-1397, 2001
    Henricksen LA, Wold MS. Replication protein A mutants lacking phosphorylation sites for p34cdc2 kinase support DNA replication. J. Biol. Chem. 269, 1121-1132, 1994
    Henricksen LA, Carter T, Dutta A, Wold MS. Phosphorylation of human replication protein A by the DNA dependent protein kinase DNA dependent protein kinase is involved in the modulation of DNA replication. Nucleic Acids Res. 24, 433-440, 1996
    Hoover DS., Wingett DG., Zhang J., Reeves R and Magnuson NS. Pim-1 protein exression is regulated by its 5’-untranslated region and translation initiation factor eIF4E. Cell Growth Differ 8, 1371-1380, 1997
    Huang S, Houghton PJ. Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol. 3, 371-7, 2003
    Kerekatte V, Smiley K, Hu B, Smith A, Gelder F, De Benedetti A. The proto-oncogene/translation factor eIF4E: a survey of its expression in breast carcinomas. Int. J. Cancer 64, 27-31, 1995
    Kenny MK, Lee SH, Hurwitz J. Multiple functions of human single-stranded-DNA binding protein in simian virus 40 DNA replication: single-strand stabilization and stimulation of DNA polymerases alpha and delta. Proc. Natl. Acad. Sci. USA 86, 9757-9761, 1989
    Kirchgessner CU, Patil CK, Evans JW, Cuomo CA, Fried LM, Carter T, Oettinger MA, Brown JM. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 267, 1178-1183, 1995
    Kleijn M, Scheper GC, Wilson ML, Tee AR, Proud CG. Localisation and regulation of the eIF4E-binding protein 4E-BP3. FEBS Lett. 532, 319-23, 2002
    Kleijn M, Scheper GC, Voorma HO, Thomas AA. Regulation of translation initiation factors by signal transduction. Eur J Biochem. 253, 531-44, 1998
    Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol. 115, 887-903, 1991
    Lai HK. and Borden KL. The promyelocytic leukemia(PML) protein suggresses cyclin D1 protein production by altering the nuclear cytoplasmic distribution of cyclin D1 mRNA. Oncogene 19, 1623-1634, 2000
    Lawrence JC Jr, Abraham RT. PHAS/4E-BPs as regulators of mRNA translation and cell proliferation. Trends Biochem Sci. 22, 345-9, 1997
    Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic translation initiation factor subunit that binds to mRNA cap. Nature 345, 544-547, 1990
    Lee SH, Kim DK, Drissi R. Human xeroderma pigmentosum group A protein interacts with human replication protein A and inhibits DNA replication. J. Biol. Chem. 270, 12801-12807, 1995
    Lejbkowicz F, Goyer C, Darveau A, Neron S, Lemieux R, Sonenberg N. A fraction of the mRNA 5' cap-binding protein, eukaryotic initiation factor 4E, localizes to the nucleus. Proc Natl Acad Sci U S A. 89, 9612-6, 1992
    Lin TA, Kong X, Saltiel AR, Blackshear PJ, Lawrence JC Jr. Control of PHAS-I by insulin in 3T3-L1 adipocytes synthesis, degradation, and phosphorylation by a rapamycin-sensitive and mitogen-activated protein kinase-independent pathway. J. Biol. Chem. 270, 18531-18538, 1995
    Lin YL, Chen C, Keshav KF, Winchester E, Dutta A. Dissection of functional domains of the human DNA replication protein complex replication protein A. J. Biol. Chem. 271, 17190-17198, 1996
    Liu VF, Weaver DT. The ionizing radiation-induced replication protein A phosphorylation response differs between ataxia telangiectasia and normal human cell. Mol. Cell. Biol. 13, 7222-7231, 1993
    Loo YM, Melendy T. The majority of human replication protein A remains complexed throughout the cell cycle. Nucleic Acids Res. 28, 3354-60, 2000
    Lou W, Ni Z, Dyer K, Tweardy DJ, Gao AC. Interlukin-6 induces prostate cancer cell growth accompanied by activation of stat3 signaling pathway. Prostate. 42, 239-42, 2000
    Mader S, Lee H, Pause A, Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15, 4990-4997, 1995
    Mer G, Bochkarev A, Gupta R, Bochkareva E, Frappier L, Ingles CJ, Edwards AM, Chazin WJ. Structural Basis for the Recognition of DNA Repair Protein UNG2, XPA, and RAD52 by Replication Factor RPA. Cell 103, 449-456, 2000
    Miyagi Y, Sugiyama A, Asai A, Okazaki T, Kuchino Y, Kerr SJ. Elevated levels of eukaryotic translation initiation factor eIF-4E, mRNA in a broad spectrum of transformed cell lines. Cancer Lett 91, 247-252, 1995
    Niu H, Erdjument-Bromage H, Pan ZQ, Lee SH, Tempst P, Hurwitz J. Mapping of amino acid residues in the p34 subunit of human single-stranded DNA-binding protein phosphorylated by DNA-dependent protein kinase and Cdc2 kinase in vitro. J. Biol. Chem. 272, 12634-12641, 1997
    Pan ZQ, Amin AA, Gibbs E, Niu H, Hurwitz J. Phosphorylation of p34 subunit of human single-stranded-DNA-binding protein in cyclin A-activated G1 extracts is catalyzed by cdk-cyclin A complex and DNA-dependent-protein kinase. Proc. Natl. Acad. Sci. USA 91, 8343-8347, 1994
    Pain VM. Initiation of protein synthesis in eukaryotic cells. Eur. J. Biochem. 236, 747-771, 1996
    Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr, Sonenberg N. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature 371, 762-767, 1994
    Pause A, Sonenberg N. Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J. 11, 2643-54, 1992
    Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-325, 1988
    Pfuetzner RA, Bochkarev A, Frappier L, Edwards AM. Replication protein A. Characterization and crystallization of the DNA binding domain. J. Biol. Chem. 272, 430-434, 1997
    Philipova D, Mullen JR, Maniar HS, Lu J, Gu C, Brill SJ. A hierarchy of SSB protomers in replication protein A. Genes Dev. 10, 2222-2233, 1996
    Poulin F, Gingras AC, Olsen H, Chevalier S, Sonenberg N. 4E-BP3, a new member of the Eukaryotic initation factor 4E-binding protein family. J. Biol. Chem. 273, 14002-14007, 1998
    Raught B, Gingras AC. eIF4E activity is regulated at multiple levels. Int J Biochem Cell Biol. 31, 43-57, 1999
    Rau M, Ohlmann T, Morley SJ, Pain VM. A reevaluation of the cap-binding protein, eIF4E, as a rate-limiting factor for initiation of translation in reticulocyte lysate. J Biol Chem. 271, 8983-90, 1996
    Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature. 433, 477-480, 2005
    Rosenwald IB., Kaspar R., Rousseau D., Gehrke L., Leboulch P., Chen JJ., Schmidt EV., Sonenberg N. and London IM. Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem. 270, 21176-21180, 1995
    Rousseau D, Gingras AC, Pause A, Sonenberg N. The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene 13, 2415-2420, 1996
    Rousseau D., Kaspar R., Rosenwald I., Gehrke L. and Sonenberg N. Translation initiation of ornithin decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc Natl Acad Sci USA 93,1065-1070, 1996
    Seo YS, Lee SH, Hurwitz J. Isolation of a DNA helicase from HeLa cells requiring the multisubunit human single-stranded DNA-binding protein for activity. J. Biol Chem. 266, 13161-13170, 1991
    Shao RG, Cao CX, Zhang H, Kohn KW, Wold MS, Pommier Y. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA: DNA-PK complexes. EMBO J. 18, 1397-1406, 1999
    Sonenberg N, Gingras AC. The mRNA 5’-cap-binding protein eIF4E and control of cell growth. Curr. Opin. Cell. Biol. 10, 268-275, 1998
    Spiotto MT, Chung TD. STAT3 mediates IL-6-induced growth inhibition in the human prostate cancer cell line LNCaP. Prostate.42, 88-98, 2000
    Sukhodolets KE, Hickman AB, Agarwal SK, Sukhodolets MV, Obungu VH, Novotny EA, Crabtree JS, Chandrasekharappa SC, Collins FS, Spiegel AM, Burns AL, Marx SJ. The 32-Kilodalton Subunit of Replication Protein A Interacts with Menin, the Product of the MEN1 Tumor Suppressor Gene. Mol. Cell. Biol. 23, 493-509, 2003
    Strudwick S, Borden KL. The emerging roles of translation factor eIF4E in the nucleus. Differentiation. 70, 10-22, 2002
    Tee AR, Proud CG. Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol Cell Biol. 22, 1674-83, 2002
    Tee AR, Proud CG. DNA-damaging agents cause inactivation of translational regulators linked to mTOR signaling. Oncogene. 19, 3021-31, 2000
    Tomoo K, Matsushita Y, Fujisaki H, Abiko F, Shen X, Taniguchi T, Miyagawa H, Kitamura K, Miura K, Ishida T. Structural basis for mRNA Cap-Binding regulation of eukaryotic initiation factor 4E by 4E-binding protein, studied by spectroscopic, X-ray crystal structural, and molecular dynamics simulation methods. Biochim Biophys Acta. 1753(2), 191-208, 2005
    Treuner K, Ramsperger U, Knippers R. Replication protein A induces the unwinding of long double-stranded DNA regions. J Mol Biol. 259, 104-12, 1996
    Tuxworth WJ Jr, Saghir AN, Spruill LS, Menick DR, McDermott PJ. Regulation of protein synthesis by eIF4E phosphorylation in adult cardiocytes: the consequence of secondary structure in the 5'-untranslated region of mRNA. Biochem J. 378, 73-82, 2004
    Vassin VM, Wold MS, Borowiec JA. Replication protein A (RPA) phosphorylation prevents RPA association with replication centers. Mol Cell Biol. 24, 1930-43, 2004
    Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet. 9, 138-141, 1993
    Von Der Haar T, Gross JD, Wagner G, McCarthy JE. The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol. 11, 503-11, 2004
    von Manteuffel SR, Gingras AC, Ming XF, Sonenberg N, Thomas G. 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc. Natl. Acad. Sci. USA 93, 4076-4080, 1996
    Wang H, Guan J, Wang H, Perrault AR, Wang Y, Iliakis G. Replication Protein A2 Phosphorylation after DNA Damage by the Coordinated Action of Ataxia Telangiectasia-Mutated and DNA-dependent Protein Kinase. Cancer Res. 61, 8554-8563, 2001
    Wang X, Li W, Parra JL, Beugnet A, Proud CG. The C terminus of initiation factor 4E-binding protein 1 contains multiple regulatory features that influence its function and phosphorylation. Mol Cell Biol. 23, 1546-57, 2003
    Wobbe CR, Weissbach L, Borowiec JA, Dean FB, Murakami Y, Bullock P, Hurwitz J. Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. Proc. Natl. Acad. Sci. USA 84, 1834-1838, 1987
    Wold MS. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 61-92, 1997
    Zhang X, Shu L, Hosoi H, Murti KG, Houghton PJ. Predominant nuclear localization of mammalian target of rapamycin in normal and malignant cells in culture. J Biol Chem. 277, 28127-34, 2002
    陳嘉玲,探討RPA2與4E-BP3的交互作用及其可能的生理角色。國立成功大學醫學院生物化學研究所碩士論文,2002。
    蘇榆芳,探討與RPA2有交互作用之蛋白的研究。國立成功大學醫學院生物化學研究所碩士論文,2003。
    王佩文,複製蛋白RPA2與mRNA轉譯作用抑制蛋白4E-BP3間交互作用之探討。國立成功大學醫學院生物化學研究所碩士論文,2004。
    邵雅惠,探討核轉譯作用抑制因子-4E-BP3有交互作用的蛋白質。國立成功大學醫學院生物化學研究所碩士論文,2005。

    下載圖示
    2009-07-19公開
    QR CODE