| 研究生: |
戴嘉恆 Dai, Jia-Heng |
|---|---|
| 論文名稱: |
全無機鈣鈦礦量子點摻雜膽固醇液晶雷射 All-inorganic perovskite quantum dots doped cholesteric liquid crystal laser |
| 指導教授: |
李佳榮
Lee, Chia-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 膽固醇液晶雷射 、全無機鈣鈦礦 、量子點 、光子能隙 |
| 外文關鍵詞: | cholesteric liquid crystal laser, all-inorganic perovskite, quantum dots, photonic bandgap |
| 相關次數: | 點閱:120 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用方便但有效率的水熱法合成全無機鈣鈦礦量子點,並成功摻入可視為光學共振腔之平面型膽固醇液晶,發展出高效率全無機鈣鈦礦量子點摻雜膽固醇液晶雷射器。為確認鈣鈦礦量子點基本材料特性,我們使用HRTEM, EDS, XRD等量測儀器來檢測合成出的量子點材料之尺寸大小、元素組成和晶格結構,最終確認所合成之鈣鈦礦量子點符合CsSnI3鈣鈦礦之黑色斜方晶相。將鈦鈣鈦礦量子點摻入膽固醇液晶製作出鈣鈦礦量子點摻雜膽固醇液晶雷射樣品,並測量雷射輸出偏振性、半高寬和量子點團聚的表面型態,可得到ge值達約1.8、半高寬窄至0.2 nm之雷射輸出,並確認量子點在膽固醇液晶中團聚現象會降低雷射效能。第二部份為改變膽固醇液晶中手性分子摻雜濃度,藉以改變光子能隙邊緣位置來調控雷測輸出波長,結果發現吸收與螢光兩條件之抗衡會影響雷射閥值。本實驗中最低之雷射閥值可達約1.86 µJ/pluse,此值與上述雷射特性(半高寬與ge值)與傳統染料摻雜膽固醇液晶雷射之特性已可相比擬。最後部分乃藉由外加場(溫度及交流與直流電壓)來調變CLC反射波段位置藉以達成鈣鈦礦量子點液晶雷射之多方式可調控性能。此研究中首次發展的全無機鈣鈦礦量子點摻雜膽固醇液晶雷射有潛力應用於未來新穎的光子學應用上,特別是在創新的可調控式光發射元件方面。
This work demonstrated for the first time an highly efficient all-inorganic perovskite quantum dots doped CLC (AIPQD-CLC) laser. The AIPQD material as an efficient optical gain medium in the optical resonator of the CLC planar texture can be obtained by pre-underdoing a low-cost solvothermal process.. Experimental results show that the AIPQD lattice structure corresponds to the black orthorhombic phase of CsSnI3 perovskite. The ge value and linewidth of the lasing signal from the AIPQD-CLC laser measured are around 1.8 and 0.21 nm, respectively. The aggregation of the AIPQDs in the CLC may significantly decrease the lasing performance. In second part, the position of the bandedge can be changed by changing the composition ratio of the chiral and LC such that the lasing wavelength of the AIPQD-CLC laser can be tuned. Experimental results show that both the absorption and photoluminescence (PL) of the QDs may competitively influence the lasing threshold. Additionally, the energy threshold of the AIPQD-CLC laser can be as low as 1.86 μJ/pulse. Including the lasing threshold, ge value and linewidth, the performances of the AIPQD-CLC laser are nearly comparable with those based on traditional dye-doped CLC lasers. In third part, the thermal, AC and DC electrical tuning features of the AIPQD-CLC laser were demonstarted. The AIPQD-CLC laser exhibited a high potential to become a new class of candidates for photonic applications, particularly in multi-tunable light-emitting devices.
[1] J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. App. Phys. 75(4), 1896–1899 (1994).
[2] T. H. Lin, Y. J. Chen, C.H. Wu, Y. G. Fuh, J. H. Liu and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability”, App. Phys. Let. 86, 161120 (2005).
[3] M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” 92, 051108 (2008).
[4] B. K., H. Choi, M. Y. Jeong, and J. W. Wu, “Effective medium analysis for optical control of laser tuning in a mixture of azo-nematics and cholesteric liquid crystal,” J. Opt. Soc. Am. B 27, 204–207 (2010).
[5] Y. Guo, C. Liu, H. Tanaka, and E. Nakamura, “Air-Stable and Solution-Processable Perovskite Photodetectors for Solar-Blind UV and Visible Light,” J. Phys. Chem. Lett. 6, 535−539 (2015).
[6] Y. Jia, R. A. Kerner, A. J. Grede, A. N. Brigeman, B. P. Rand, and N. C. Giebink, “Diode-Pumped Organo-Lead Halide Perovskite Lasing in a Metal-Clad Distributed Feedback Resonator,” Nano Lett. 16, 4624−4629 (2016).
[7] Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-Temperature Near-Infrared High-Q Perovskite Whispering- Gallery Planar Nanolasers,” Nano Lett. 14, 5995−6001 (2014).
[8] Q. Sun and W. J. Yin, “Thermodynamic Stability Trend of Cubic Perovskites,” J. Am. Chem. Soc. 139, 14905−14908 (2017).
[9] I. Hwang, I. Jeong, J. Lee, M. J. Ko, and K. Yong, “Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation”, ACS Appl. Mater. Interfaces 7, 17330−17336 (2015)
[10] M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, “Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells,” J. Phys. Chem. Lett. 7, 167−172 (2016).
[11] B. R. Sutherland and E. H. Sargent, “Perovskite photonic sources,” Nat. Photon. 10, 295–302 (2016).
[12] Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[13] S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[14] Y. Su, X. Chen, W. Ji, Q. Zeng, Z. Ren, Z. Su, L. Liu, “Highly controllable and efficient synthesis of mixed-halide CsPbX3 (X = Cl, Br, I) perovskite QDs toward the tunability of entire visible light,” ACS Appl. Mater. Interfaces 9, 33020−33028 (2017).
[15] F. Liu, Y. Zhang, C. Ding, S. Kobayashi, T. Izuishi, N Nakazawa, T. Toyoda, T. Ohta, S. Hayase, T. Minemoto, K. Yoshino, S. Dai, Q Shen, “Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield,” ACS Nano 11, 10373−10383 (2017).
[16] J. A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K. Z. Milowska, R. G. Cortadella, B. Nickel, C. Cardenas-Daw, J. K. Stolarczyk, A. S. Urban, and J. Feldmann, “Quantum size effect in organometal halide perovskite nanoplatelets,” Nano Lett. 15, 6521–6527 (2015).
[17] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[18] L. J. Chen , J. D. Lin , S. Y. Huang, T. S. Mo, and C. R. Lee, “Thermally and electrically tunable lasing emission and amplified spontaneous emission in a composite of inorganic quantum dot nanocrystals and organic cholesteric liquid crystals,” Adv. Opt. Mater. 1, 637–643 (2013).
[19] P. J. Collings and M. Hird, “Introduction to Liquid Crystals: Chemistry and Physics,” CRC Press (1997).
[20] O. Lehmann, “Über fliessende Krystalle, Zeitschrift für Physikalische Chemie,” 4(1), 462–472 (1889).
[21] P. Oswald and P. Pieranski, “Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments,” CRC Press (1997).
[22] P. J. Collings and M. Hird, “Introduction to Liquid Crystals: Chemistry and Physics,” CRC Press (1997).
[23] 歐陽鐘灿,劉寄星,從肥皂泡到液晶生物膜,牛頓出版股份有限公司,54–60頁 (1995)。
[24] P. G. de Gennes and J. Prost, “The Physics of Liquid Crystals,” Clarendon Press (1995).
[25] 王新久,液晶光學和液晶顯示,北京:科學出版社,19–24頁(2006).
[26] B. ahadur, “Liquid Crystals: Applications and Uses,” World Scientific (1990).
[27] I. C. Khoo, “Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena,” John Wiley & Sons (1995).
[28] A. Yariv, “Optical Electronics in Modern Communications,” Oxford University Press (1997).
[29] J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50(8), 081202 (2011).
[30] 克潜·张,李德杰,微波與光電子學中的電磁理論,五南圖書出版股份有限公司,598-603頁(2004).
[31] P. Pieranski, E. Dubois-Violette, F. Rothen, and L. Strzelecki, “Geometry of Kossel lines in colloidal crystals,” J. Phys. France 42, 53–60 (1981).
[32] P. E. Cladis, T. Garel, P. Pieranski, “Kossel diagrams show electric field induced cubic tetragonal structural transition in frustrated liquid crystal blue phases,” Phys. Rev. Lett. 57, 2841–2844 (1986).
[33] F. C. Frank, “Liquid crystals–on the theory of liquid crystals,” Disc. Faraday Soc. 25, 19–28 (1958).
[34] S. Teitler, B. W. Henvis, “Refraction in stratified, anisotropic media,” J. Opt. Soc. Am. 60, 830–834 (1970).
[35] D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972).
[36] C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc. 29, 833 (1933).
[37] A. Sugita, H. Takezoe, Y. Ouchi, A. Fukuda, E. Kuze, and N. Goto, “Numerical calculation of optical eigenmodes in cholesteric liquid crystals by 4×4 matrix method,” J. Jpn. Appl. Phys. 21, 1543–1546 (1982).
[38] 葉蕙溱,光場對摻雜偶氮染料膽固醇液晶結構之影響與其在可調控光子元件之應用,博士論文,國立成功大學光電科學與工程研究所 (2008)。
[39] 丁勝懋,雷射工程導論(修訂第四版),中央圖書出版社(台北) (2002)。
[40] Joseph T. Verdeyen, “laser Electronics,” 3rd Ed., Prentice Hall (1995).
[41] H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[42] A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[43] L.S. Goldberg and J.M. Schnur, “Tunable internal feedback liquid crystal laser,” US. Patent, 3, 771, 065 (1973).
[44] I. P. Il'chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals”, JETP Lett. 32, 27 (1981).
[45] 物理雙月刊(廿七卷五期)2005 年 10 月。
[46] M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896 (1994).
[47] T.H. Lin, Y.J. Chen, C.H. Wu, Y.G. Fuh, J.H. Liu, P.C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[48] V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
[49] K. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic Cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[50] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso superstructured organometal halide perovskites”, Science 338(2), 643–647 (2012).
[51] 唐立權、黃中垚、張振雄、李明憲,第一原理計算鈣鈦礦結構三元鹵化物之二階非線性光學係數,物理雙月刊(廿七卷四期),2005 年,第572頁。
[52] 尤書鴻,氮化銦量子點與薄膜之光激發螢光研究,國立交通大學電子物理研究所碩士論文。
[53] J. F. Chabot, M. Côté, and J. F. Brière, “Ab initio study of the electronic and structural properties of CsSnI3 perovskite”, Am. Phy. Soc. March Meeting (2004).
[54] A. G. Kontos, A. Kaltzoglou, E. Siranidi, D. Palles, G. K. Angeli, M. K. Arfanis, V. Psycharis, Y. S. Raptis, E. I. Kamitsos, P. N. Trikalitis, C. C. Stoumpos, M. G. Kanatzidis, and P. Falaras, “Structural stability, vibrational properties, and photoluminescence in cssni3 perovskite upon the addition of SnF2,” Inorg. Chem. 56, 84–91 (2017).
[55] S.A. Veldhuis, P.P. Boix, N. Yantara, M. Li, T.C. Sum, N. Mathews, S.G. Mhaisalkar “Perovskite materials for light mitting diodes and lasers,” Adv. Mater. 28(32), 6804–6834 (2016).
[56] M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65, 676 (1994).
[57] T. Hattori, T. Taira, M. Era, T. Tsutsui, and S. Saito, “Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound”, Chem. Phys. Lett. 254, 103–108 (1996).
[58] X. Hong, T. Ishihara and A. V. Nurmikko, “Photoconductivity and electroluminescence in lead iodide based natural quantum well structures,” Solid State Commun. 84(6), 657–661 (1992).
[59] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[60] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342 (6156),
[61] 344–347 (2013).
[62] J. C. Yu, D. B. Kim, E. D. Jung, B. R. Lee, and M. H. Song, “High-performance perovskite light-emitting diodes via morphological control of perovskite films,” Nanoscale 8, 7036–7042 (2016).
[63] N. Yantara , S. Bhaumik , F. Yan , D. Sabba , H. A. Dewi , N. Mathews ,P. P. Boix , H. V. Demir, and S. Mhaisalkar, “Inorganic halide perovskites for efficient light-emitting diodes,” J. Phys. Chem. Lett. 6, 4360–4364 (2015).
[64] G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low temperature solution processed wavelength tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[65] Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9(9), 687–692 (2014).
[66] X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno, and C. Soci, “Lead iodide perovskite light-emitting field-effect transistor,” Nat. Commun. 6, 7383 (2015).
[67] B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8(10), 10947–10952 (2014).
[68] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M.V. Gustafsson, M.T. Trinh, S. Jin, and X. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[69] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko , “Nanocrystals of cesium lead halide perovskites (CsPbX₃, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692 (2015).
[70] http://www.eurotek.com/Olympus/IX71/features/Two_tier.
[71] D. E. Scaife, P. F. Weller, and W. G. Fisher, “Crystal preparation and properties of cesium tin(u) trihalides,” J. Solid State Chem. 9, 308–314 (1974).
[72] T. C. Jellicoe, J. M. Richter, H. F. J. Glass, M. Tabachnyk, R. Brady, S. E. Dutton, A. Rao, R. H. Friend, D. Credgington, N. C. Greenham, and M. L. Böhm, “Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals,” J. Am. Chem. Soc. 138, 2941−2944 (2016).
[73] L. J. Chen, C. R. Lee, Y. J. Chuang, Z. H. Wu, and C. Chen, “Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application,” J. Phys. Chem. Lett. 7, 5028−5035 (2016).
[74] D. Bera, L. Qian, T. K. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials 3, 2260−2345 (2010).
[75] S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, and H. J. Snaith, “Recombination kinetics in organic inorganic perovskites: excitons, free charge, and subgap states,” Phys. Rev. Appl. 2, 034007 ( 2014).
[76] A. Bobrovsky, K. Mochalov, V. Oleinikov, A. Sukhanova, A. Prudnikau, M. Artemyev, V. Shibaev, and I. Nabiev, “Optically and electrically controlled circularly polarized emission from cholesteric liquid crystal materials doped with semiconductor quantum dots,” Adv. Mater. 24, 6216−6222 (2012).
[77] Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. de la Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy,” Phys. Rev. B 85, 085418−085426 (2012).
[78] X. F. Liu, R. Wang, Y. P. Jiang, Q. Zhang, X. Y. Shan, and X. H. Qiu, “Thermal conductivity measurement of individual CdS nanowires using microphotoluminescence spectroscopy,” J. Appl. Phys. 108, 054310−054313 (2010).
[79] Q. Zhang, X. Y. Shan, X. Feng, C. X. Wang, Q. Q. Wang, J. F. Jia, and Q. K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett. 11, 4270−4274 (2011).
[80] Q. Zhang, X. Liu, M. I. B. Utama, J. Zhang, M. de la Mata, J. Arbiol, Y. Lu, T. C. Sum, and Q. Xiong, “Highly enhanced exciton recombination rate by strong electron−phonon coupling in single ZnTe nanobelt,” Nano Lett. 12, 6420−6427 (2012).
[81] M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals”, Science 283, 209−212 (1999).
[82] S. Chatterjee and T. K. Mukherjee, “Thermal luminescence quenching of amine-functionalized silicon quantum dots: a pH and wavelength-dependent study”, Phys. Chem. Chem. Phys. 17, 24078−24085 (2015).
[83] J. Ye, Y. Hou, G. Zhang, and C. Wu, “Temperature-induced aggregation of poly(n-isopropylacrylamide)-stabilized CdS quantum dots in water,” Langmuir 24, 2727−2731 (2008).
[84] Y. Wang and A. Hu, “Carbon quantum dots: synthesis, properties and applications,” J. Mater. Chem. C 2, 6921–6939 (2014).
[85] 林俊瑋,利用鐵電型液晶摻雜膽固醇液晶發展可低電壓調控色彩於全白光域之智能材料,碩士論文,國立成功大學光電科學與工程研究所 (2017)。