| 研究生: |
吳宛霖 Wu, Wan-Lin |
|---|---|
| 論文名稱: |
探討蝴蝶蘭原球體發育時期蔗糖對乙醛酸循環代謝路徑之調控 Study of glyoxylate cycle regulation by sucrose during protocorm growth in Phalaenopsis aphrodite |
| 指導教授: |
蔡文杰
Tsai, Wen-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 熱帶植物科學研究所 Institute of Tropical Plant Sciences |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 台灣白花蝴蝶蘭 、萌發 、蔗糖 、乙醛酸循環 |
| 外文關鍵詞: | Phalaenopsis aphrodite, germination, sucrose, glyoxylate cycle |
| 相關次數: | 點閱:147 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
乙醛酸循環(glyoxylate cycle)為油類種子萌發的特有代謝路徑,在油脂的代謝中扮演了不可或缺的角色。研究顯示,在種子萌發過程中,乙醛酸循環關鍵酵素isocitrate lyase (ICL)及malate synthase (MLS)的酵素活性及基因表現受到外加碳水化合物所抑制。蝴蝶蘭為單子葉植物,但其構造卻和其他單子葉植物的澱粉類種子不同。成熟的蘭花種子中具有一個未分化的胚,不具胚乳組織,且在未分化的胚中含有大量的油脂組織。由於蘭花種子所儲存的能量極少,自然萌發時須真菌共生提供足夠的能量。在試管培養播種時,碳水化合物的添加扮演重要的角色,使蘭花種子正常生長發育。為了解碳水化合物對於蝴蝶蘭種子萌發及原球體發育時油脂運轉情形的影響,本研究首先在OrchidBase中取得PaICL和PaMLS兩個基因的全長,探討蝴蝶蘭種子在組織培養過程中,蔗糖對台灣白花蝴蝶蘭種子在萌發後不同時期中乙醛酸循環的影響。結果顯示,在萌發後原球體發育過程中,蔗糖的添加使PaICL及PaMLS的基因表現量下降,其中PaMLS的基因表現在蔗糖的處理後顯著降低。為了進一步找出可能調控PaMLS轉錄的轉錄因子,本研究選用在1/2MS及1%蔗糖培養基中,培養4天及7天原球體進行次世代定序,並分析兩時期基因體中表現量具有差異的基因。此外,利用plantPAN資料庫預測PaMLS 2-kb的啟動子序列上可能的轉錄因子結合位點。綜合原球體差異表現基因以及PaMLS啟動子序列分析之結果,篩選出一個正調控轉錄因子基因(PaHB5)及七個負調控轉錄因子基因(PaANT, PaMADS2, PaMYB4, PaPIF3, PaRAV1-1, PaWRKY18, PaWRKY71)。利用雙螢光素酶活性分析,發現PaHB5對於malate synthase的啟動子具有2.73倍啟動的能力。此研究的結果首次揭開了乙醛酸循環在分子機制上的調控機制。
The glyoxylate cycle plays a central role in converting storage oil to soluble carbohydrate in oilseeds to support growth during germination. Enzyme activity or transcript accumulation of key enzymes of the glyoxylate cycle, isocitrate lyase (ICL)/ malate synthase (MLS), are downregulated by carbon catabolite repression during seed germination. Without endosperm and cotyledon, orchid seeds was found large amount of lipid reserved in the immature embryo, and carbohydrates play a vital role to support protocorm development during tissue culture. To investigate the metabolism of orchid seed during germination, I explored how the sucrose regulates the glyoxylate cycle during the Phalaenopsis aphrodite protocorm development. We identified ICL and MLS from OrchidBase, and named as PaICL and PaMLS. Expression analysis showed that sucrose depressd the expression of both PaICL and PaMLS, and the transcripts level of PaMLS was extremely downregulated by sucrose treatment. For identification of putative genes encoded transcription factor which regulate expression of malate synthase, digital expression analysis comparing transcriptomes derived from day 4 and day 7 protocorms cultured on 1/2 MS medium and sucrose was performed. In addition, 2-kb upstream sequence of malate synthase gene was retrieved from OrchidBase for analyzing regulatory motif by plantPAN. Combining transcriptomic and regulatory motif analysis, one putative positive (PaHB5) and seven negative transcription factor genes (PaANT, PaMADS2, PaMYB4, PaPIF3, PaRAV1-1, PaWRKY18, PaWRKY71) are identified. Dual luciferase assay was adopted to analyze binding ability of PaHB5 to the promoter of malate synthase gene. Results show that PaHB5 could increase expression of malate synthase gene for 2.73 fold. This is the first study reveal that the molecular mechanism underlying glyoxylate cycle.
Bewley, J.D., and M. Black. Physiology and biochemistry of seeds in relation to germination: Volume 1: Development, Germination, and Growth. Springer, Berlin. 1978
Buscaill, P., and S. Rivas. Transcriptional control of plant defence responses. Current Opinion in Plant Biology.20 35-46, 2014
Chang, W.-C., T.-Y. Lee, H.-D. Huang, H.-Y. Huang, and R.-L. Pan. PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics.9 (1): 561, 2008
Chen, W.-H., and H.-H. Chen. Orchid Biotechnology I. World Scientific Publishing Co. Pte. Ltd, Singapore. 23-34, 2007
Cornah, J.E., V. Germain, J.L. Ward, M.H. Beale, and S.M. Smith. Lipid Utilization, Gluconeogenesis, and Seedling Growth in Arabidopsis Mutants Lacking the Glyoxylate Cycle Enzyme Malate Synthase. Journal of Biological Chemistry.279 (41): 42916-42923, 2004
Eastmond, P.J., V. Germain, P.R. Lange, J.H. Bryce, S.M. Smith, and I.A. Graham. Post-germinative growth and lipid catabolism in oilseeds lacking the glyoxylate cycle. PNAS 97 (10): 5669–5674, 2000
Eastmond, P.J., and I.A. Graham. Re-examining the role of the glyoxylate cycle in oilseeds. TRENDS in Plant Science 6 (2): 72-78, 2001
Ernst, R., and J. Arditti. Carbohydrate Physiology of Orchid Seedlings. III. Hydrolysis of Maltooligosaccharides by Phalaenopsis (Orchidaceae) Seedlings. American Journal of Botany.77 (2): 188-195, 1990
Finkelstein, R.R., and T.J. Lynch. Abscisic Acid Inhibition of Radicle Emergence But Not Seedling Growth Is Suppressed by Sugars. Plant Physiology.122 (4): 1179-1186, 2000
Graham, I.A. Seed Storage Oil Mobilization. Annual Review of Plant Biology.59 (1): 115-142, 2008
Graham, l.A., C.J. Baker, and L. Christopher J. Analysis of the cucumber malate synthase gene promoter by transient expression and gel retardation assays. The Plant Journal 6 (6): 893-902, 1994a
Graham, l.A., K.J. Denby, and C.J. Leaver. Carbon Catabolite Repression Regulates Glyoxylate Cycle Gene Expression in Cucumber. The Plant Cell.6 (5): 761-772, 1994b
Graham, l.A., C.J. Leaver, and S.M. Smith. lnduction of Malate Synthase Gene Expression in Senescent and Detached Organs of Cucumber. The Plant Cell.4 (3): 349-357, 1992
Hong, Y.F., T.H.D. Ho, C.F. Wu, S.L. Ho, R.H. Yeh, C.A. Lu, P.W. Chen, L.C. Yu, A. Chao, and S.M. Yu. Convergent Starvation Signals and Hormone Crosstalk in Regulating Nutrient Mobilization upon Germination in Cereals. The Plant Cell.24 (7): 2857-2873, 2012
Hsiao, Y.Y., Z.J. Pan, C.C. Hsu, Y.P. Yang, Y.C. Hsu, Y.C. Chuang, H.H. Shih, W.H. Chen, W.C. Tsai, and H.H. Chen. Research on Orchid Biology and Biotechnology. Plant and Cell Physiology.52 (9): 1467-1486, 2011
Jin, J., H. Zhang, L. Kong, G. Gao, and J. Luo. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Research.42 (D1): D1182-D1187, 2013
Johnson, T.R., and M.E. Kane. Differential Germination and Developmental Responses Ofbletia Purpurea(Orchidaceae) to Mannitol and Sorbitol in the Presence of Sucrose and Fructose. Journal of Plant Nutrition.36 (5): 702-716, 2013
Kanehisa, M., and S. Goto. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research.28 (1): 27-30 2000
Kanehisa, M., S. Goto, Y. Sato, M. Kawashima, M. Furumichi, and M. Tanabe. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Research.42 (D1): D199-D205, 2013
Knudson, L. Nonsymbiotic Germination of Orchid Seeds. Botanical Gazette.73 (1): 1-25, 1922
Kudielka, R.A., and R.R. Theimer. Derepression of glyoxylate cycle enzyme activities in anise suspension culture cells. . Plant Science Letters.31 (2-3): 237--244, 1983
Leake, J.R. Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Current Opinion in Plant Biology.7 (4): 422-428, 2004
Lee, Y.-I., E.C. Yeung, N. Lee, and M.-C. Chung. Embryology of Phalaenopsis amabilis var. formosa:embryo development. Botanical Studies 49 139-146, 2008
Leivar, P., and P.H. Quail. PIFs: pivotal components in a cellular signaling hub. Trends in Plant Science.16 (1): 19-28, 2011
Penfield, S., S. Graham, and I.A. Graham. Storage reserve mobilization in germinating oilseeds: Arabidopsis as a model system. Biochemical Society Transactions 33 380-383, 2005
Rook, F., S.A. Hadingham, Y. Li, and M.W. Bevan. Sugar and ABA response pathways and the control of gene expression. Plant, Cell and Environment.29 (3): 426-434, 2006
Smith, S.E. Asymbiotic Germination of Orchid Seeds on Carbohydrates of Fungal Origin. New Phytologist.72 (3): 497-499, 1973
Smith, S.E., and D. Read. Mycorrhizal Symbiosis. Academic Press, San Diego, California. 419-457, 2008
Sreenivasulu, N., and U. Wobus. Seed-Development Programs: A Systems Biology–Based Comparison Between Dicots and Monocots. Annual Review of Plant Biology.64 (1): 189-217, 2013
Stewart, J.L., J.N. Maloof, and J.L. Nemhauser. PIF Genes Mediate the Effect of Sucrose on Seedling Growth Dynamics. PLoS ONE 6 (5): 2011
Stewart, S.L., and M.E. Kane. Effects of Carbohydrate Source on Thein Vitroasymbiotic Seed Germination of the Terrestrial Orchidhabenaria Macroceratitis. Journal of Plant Nutrition.33 (8): 1155-1165, 2010
Sun, C. A Novel WRKY Transcription Factor, SUSIBA2, Participates in Sugar Signaling in Barley by Binding to the Sugar-Responsive Elements of the iso1 Promoter. The Plant Cell Online.15 (9): 2076-2092, 2003
Swarbreck, D., C. Wilks, P. Lamesch, T.Z. Berardini, M. Garcia-Hernandez, H. Foerster, D. Li, T. Meyer, R. Muller, L. Ploetz, A. Radenbaugh, S. Singh, V. Swing, C. Tissier, P. Zhang, and E. Huala. The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Research.36 (Database): D1009-D1014, 2008
Taiz, L., and E. Zeiger. Plant Physiology. 5th edition. Sinauer Associates, Inc, Sunderland, Massachusetts. 605-606, 2010
Tiiu Kull, J.A. Orchid Biology VIII: Reviews and Perspectives. 8. Springer Science & Business Media, Dordrecht. 287-385, 2011
Tsai, W.-C., C.-S. Kuoh, M.-H. Chuang, W.-H. Chen, and H.-H. Chen. Four DEF-Like MADS Box Genes Displayed Distinct Floral Morphogenetic Roles in Phalaenopsis Orchid. Plant and Cell Physiology.45 (7): 831-844 2004
Valadares, R.B.S., S. Perotto, E.C. Santos, and M.R. Lambais. Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination. Mycorrhiza.24 (5): 349-360, 2013
Wang, H.-J., A.-R. Wan, C.-M. Hsu, K.-W. Lee, S.-M. Yu, and G.-Y. Jauh. Transcriptomic adaptations in rice suspension cells under sucrose starvation. Plant Molecular Biology.63 (4): 441-463, 2006
Yan, D., L. Duermeyer, C. Leoveanu, and E. Nambara. The functions of the endosperm during seed germination. Plant and Cell Physiology.2014
校內:2019-09-09公開