簡易檢索 / 詳目顯示

研究生: 王碩佑
Wang, Shuo-Yu
論文名稱: 含Cu(I)離子金屬硫族化合物之合成與結構鑑定
Synthesis and Structures of Metal Chalcogenides Featuring Mobile Cu(I) Ions
指導教授: 許桂芳
Hsu, Kuei-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 59
中文關鍵詞: 金屬硫族化合物硫鹵族化合物單晶結構
外文關鍵詞: metal chalcogenides, disorder, deficiency
相關次數: 點閱:78下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用高溫助熔長晶法,合成出兩個不同結構的金屬硫族化合物材料,皆含Cu(I)在結構骨架中,分子式分別為Ba3.5Cu7.625In1.125Se9 (1)以及Sb3.3(1)CuSe5 I (2)。
    化合物1為三維結構材料,晶體的晶系及空間群為Orthorhombic Pnma,單位晶格的a、b、c軸長分別為a = 46.1700(12) Å, b = 4.26710(10) Å, c = 19.8125(5) Å。結構組成由CuSe3、MSe4 ( M = Cu, In ),以共用Se相互連接形成三維立體結構,結構骨架的基本重複單元可以主要分成四個團簇區塊(unit),團簇分別以Cu/In錯排或混填與Se所構成,並共用Se連結成基本重複單元,並在骨架中b軸方向的結構孔道中填有Ba2+陽離子。
    化合物2為一新穎硫鹵族三維結構材料,晶體的晶系及空間群為Monoclinic P2/m,單位晶格的a、b、c軸長分別為a = 10.5901(16) Å, b = 4.0435(6) Å, c = 13.160(2) Å。結構組成由SbSe5、SbSe6與CuSe2I2形成三維結構,並以共用Se形成一鏈狀結構,再由Cu四面體橋接,形成雙鍊結構的單位晶胞(unit cell),在橋結位置的Cu位置發現有錯排的特殊情形,此外單位晶胞間藉由Sb位置連結,沿著a軸方向無限延伸,再以共用Se方式沿b軸方向堆疊而成。整體結構較為特殊,若以多面體圖來觀察可以發現整體猶如電線結構,內層以SbSe5以及SbSe6形成鏈狀結構,外層以CuSe2I2包覆,並藉由共用Sb位置串聯而得此結構,未來將以合成純相為目標,進一步研究此特殊結構所產生的物理性質。

    Two new quaternary metal chalcogenide─Ba3.5Cu7.625In1.125Se9 (1) and Sb3.3(1)CuSe5I (2), have been synthesized using KBr flux at 800 ⁰C, and using KBr flux at 500 ⁰C respectively. Compound (1) crystallizes in the Orthorhombic Pnma space group with a = 46.1700(12) Å, b = 4.26710(10) Å, c = 19.8125(5) Å. Compound (2) crystallizes in the Monoclinic P2/m space group with a = 10.5901(16) Å, b = 4.0435(6) Å, c = 13.160(2) Å. The compound (1) shows a three-dimensional (3D) structure composed of CuSe4 tetrahedra, CuSe3 trigonal with the structural tunnel filled with Ba2+ and InSe4 tetrahedra along b-axis. The compound (2) also shows a three-dimensional (3D) structure composed of SbSe5 square pyramid, SbSe6 octahedra and CuSe2I2 tetrahedra. The framework is constructed by chain structure of SbSe5 square pyramid and SbSe6 octahedra with Cu bridge. There is complicated structure such as disorder of Cu or Cu/In in structure. Additionally, the deficiency of Cu sites in compound (1) and heavy atoms like Sb and I in compound (2), both situations would expect to decrease lattice thermal coductivity κl, and so the two new quaternary metal chalcogenides would be expected to exhibit high figure of merit (ZT) of thermoelectric materials(TE).

    摘要 II Abstract IV 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 第二章 金屬硫族化合物之合成與鑑定 5 2.1 合成 5 2.2 單晶X-ray繞射儀 8 2.3 粉末X-ray繞射儀 9 2.4 能量散佈光譜儀 11 2.5 微差熱分析 11 2.6 全反射式霍氏轉換紅外線光譜儀 12 2.7 熱電性質測量 13 第三章 化合物1結構與性質探討 14 3.1.1 晶體結構 14 3.1.2 物理性質 22 第四章 化合物2結構與性質討論 33 4.1.1 晶體結構 33 4.1.2 物理性質 39 第五章 結論 41 第六章 參考文獻 42 第七章 附錄 45

    [1] DiSalvo, F. J. Science 1999, 285, 703-706
    [2] Tritt, T. M. Science 1999, 283, 804.
    [3] Mercoui G. Kanatzidis Chem. Mater. 2010, 22, 646-659
    [4] Chung. D. Y.; Choi, K. S.; Iordanidis, L.; Schindler, J. L.; Brazis, P. W.; Kannewurf, C. R.; Chen, B.; Hu, S.; Uher, C.; Kanatzidis, M. G. Chem. Mater. 1997, 9, 3060.
    [5] Mrotzek, A.; Chung, D.-Y.; Hogan, T.; Kanatzidis, M. G. J. Mater. Chem. 2000, 10, 1667.
    [6] Androulakis, J.; Hsu, K. F.; Kong, H.; Uher, C.; D’Angelo, J. J.; Downey, A.; Hogan, T.; Kanatzidis, M. G. Adv. Mater. 2006, 18, 1170.
    [7] Derakhshan, S.; Assoud, A.; Taylor, N. J.; Kleinke, H. Intermetallics. 2006, 14, 198.
    [8] Chung, D. Y.; Hogan, T. P.; Rocci-Lane M.; Brazis, P.; Ireland, J. R.; Kannewurf, C. R.; Bastea, M.; Uher, C.; Kanatzidis, M. G. J. Am. Chem. Soc. 2004, 126, 6414.
    [9] Rowe, D. M. CRC Handbook of Thermoelectrics. CRC Press. 1995.

    [10] Heremans, J. P.; Jovovic, V.; Toberer, E. S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G. J. Science. 2008, 321, 554.
    [11] Biswas, K.; He, J.; Zhang, Q.; Wang, G.; Uher, C.; Dravid, V.
    P.; Kanatzidis, M. G. Nat. Chem. 2011, 3, 160.
    [12] Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; Chen, X.; Liu, J.; Dresselhaus, M. S.; Chen, G.; Ren, Z. Science. 2008, 320, 634.
    [13] Biswas, K.; He, J.; Blum, I. D.; Wu, C. I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. Nature. 2012, 489, 414.
    [14] Adam, A.; Mater. Res. Bull. 2007, 42, 1986.
    [15]
    [16] Tritt, T. M. Science. 1999, 283, 804.
    Chung, D. Y.; Loo, S.; Uher, C.; Chen, W.; Dyck, J. S.; Kanatzidis, M. G. Chem. Mater. 2012, 24, 1854.
    [17] Kim, J. H.; Chung, D. Y.; Bilc, D.; Loo, S.; Short, J.; Subhendra, D.; Mahanti.; Hogan, T.; Mercouri G.; Kanatzidis. Chem. Mater. 2005, 17, 3606.
    [18] Sridhar K.,Chattopadhyay K. J. Alloys Compd. 1998, 264, 293–298
    [19] Fujikane M., Kurosaki K., Muta H., Yamanaka S. J. Alloys Compd., 2005, 393, 299–301
    [20] Liu, H.; Shi, X.; Xu, F.; Zhang, L.; Zhang, W.; Chen, L.; Li, Qiang.; Uher, C.; Day, T.; Snyder, G. J. Nat. Mater. 2012, 11, 422.
    [21] Slack, G. A. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 407-440 (CRC, 1995).
    [22] Feng Jia, Shu Zhang, Xiaokun Zhang, Xiaoli Peng, Haitao Zhang, and Yong Xiang. Chem. Eur. J. 2014, 20, 15941 – 15946
    [23] Kim, J. H.; Chung, D. Y.; Bilc, D.; Loo, S.; Short, J.; Subhendra, D.; Mahanti.; Hogan, T.; Mercouri G.; Kanatzidis. Chem. Mater. 2005, 17, 3606.
    [24] McGuire, M. A.; May, A. F.; Singh, D. J.; M.; Du, M. H.; Jellison, G. E. J. Solid State Chem. 2011, 184, 2744.
    [25] Mayasree, O.; Sankar, C. R.; Assoud, A.; Kleine, H. Iong. Chem. 2011, 50, 4580.
    [26] Sheldrick, G. M.; SHELXL-97. University of Göttingen, Germany, 1997.

    下載圖示 校內:2021-08-01公開
    校外:2021-08-01公開
    QR CODE