簡易檢索 / 詳目顯示

研究生: 謝雯軻
Hsieh, Wen-Ko
論文名稱: 頭頂搬運系統對高科技廠房微振之影響研究
Research on the micro-vibration effect of overhead hoist transfer cars in high-tech buildings
指導教授: 朱聖浩
Ju, Shen-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系碩士在職專班
Department of Civil Engineering (on the job class)
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 74
中文關鍵詞: 高科技廠房有限元素法頭頂搬運系統微振動
外文關鍵詞: high-tech factories, finite element method, overhead hoist transfer, micro-vibration
相關次數: 點閱:151下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨科技之進步,在人力密集之高科技廠房皆逐漸轉型智能化、自動化來面對人口老化、人力短缺之問題,而OHT系統(Overhead Hoist Transfer)在高科技廠房被廣泛利用來進行物料之搬運,台灣積體電路製造公司(TSMC)之製程已朝2~3奈米邁進,隨先進製程線寬不斷縮小,微振動之影響將日益嚴重。
    本研究建立實際尺寸之三維高科技廠房有限元素模型,並於一樓天花板建置OHT軌道系統,藉由調整「軌道不平整度」、「行走車速」及「樓板厚度」,並利用快速傅立葉轉換及1/3八音階倍頻法進行低頻(0~100Hz)之能量加總獲得樓板振動dB值,以了解一樓鋼筋混凝土層及二樓鋼構層之微振動受振反應特性。
    本案例中OHT之微振動主要影響頻率在一樓鋼筋混凝土層為25Hz、二樓鋼構層為40~63Hz,降低軌道不整度、車速及增加密集柱支撐皆能減少微振動的產生,而樓板的厚薄則與振動量無正、負相關,僅與其自然振動頻率有關;總體而言OHT重量較輕而高科技廠房構件尺寸龐大,其行走產生之微振動並不會影響高階之先進製程。

    This study is based on a three-dimensional finite element model of a high-tech fabrication plant, in which an OHT(Overhead Hoist Transfer) system has been mounted on the ceiling of the first floor. Adjusting factors of “railway irregularity”, “travel speed”, and “floor thickness” with the fast Fourier transform and the one third octave band spectrum method totaling low frequency (0~100Hz) energy to obtain the floor vibration dB value, we were able to observe the response characteristics of the micro vibrations of the reinforced concrete layer on the first floor and the steel layer on the second floor in the high-tech factory.
    In this case, confirms that OHT’s micro-vibration mainly affects the frequency of 25Hz for the reinforced concrete layer on the first floor and 40~63Hz for the steel layer on the second floor. By decreasing “rail irregularity”, “travel speed” and increasing the density of columns in a given area, there may be lesser micro vibrations produced. The thickness of floors has no positive or negative correlation with the amount of vibration, but only related to its natural frequency. In conclusion, the OHT is lighter in weight and the high-tech components are large in size, micro vibrations caused by its walking will not affect the high-end advanced manufacturing process.

    第一章 緒論 1 1-1 前言 1 1-2 研究背景 2 1-3 本文內容 3 第二章 文獻回顧 4 2-1 前言 4 2-1-1 振動標準文獻 4 2-1-2 振動量測文獻 5 2-1-3 隔減震文獻 5 2-1-4 系統識別文獻 6 第三章 OHT裝置介紹 7 3-1 前言 7 3-2 OHT系統 8 3-2-1 OHT運作步驟 8 3-2-2 OHT軌道 9 3-2-3 OHT晶舟盒 10 3-2-4 OHT供電系統 12 3-2-5 OHT載具 13 3-2-6 無塵室天花板系統 15 第四章 有限元素分析程序 20 4-1 前言 20 4-2 本研究分析程序 21 4-3 有限元素模型 22 4-3-1 本模型輸入數據及意義 22 4-3-2 三維高科技廠房有限元素模型 34 4-3-3 軌道及頭頂搬運系統(OHT)有限元素模型 37 4-3-4 API土壤彈簧 40 4-3-5 1/3八音階頻譜分析 44 第五章 有限元素分析結果 47 5-1 分析位置 47 5-2 軌道不平整之影響 49 5-2-1 分析結果 51 5-2-2 不整度影響小結 58 5-3 不同車速之影響 59 5-3-1 分析結果 60 5-3-2 速度影響小結 63 5-4 樓板厚度之影響 63 5-4-1 分析結果 64 5-4-2 樓板厚度影響小結 67 5-5 一樓RC層振動樣態 67 第六章 結論 69 6-1 結論 69 6-2 未來展望 70

    1. https://scweb.cwb.gov.tw/zh-TW/Guidance/FAQdetail/55,中央氣象局地震報測中心。
    2. https://csr.tsmc.com/csr/ch/update/governance/caseStudy/1/index.html,台積電企業社會責任。
    3.游欽宏(2005),「半導體與平面顯示器製造自動化技術」,機械月刊第31卷第12期。
    4. https://www.mirle.com.tw/News/Detail/4461/%E7%B9%81%E9%AB%94/AGV-%E7%84%A1%E4%BA%BA%E6%90%AC%E9%81%8B%E8%BB%8A%E7%9A%84%E6%96%B0%E8%B6%A8%E5%8B%A2,盟立自動化股份有限公司。
    5. Gordon, C.G., “Generic Criteria for Vibration Sensitive Equipment,”SPIE, Vol. 1619, pp. 71-75, 1991
    6. Amick, H., Gendreau, M., Busch, T., and Gordon, C., “Evolving Criteria for Research Facilities: Vibration,” SPIE, Vol. 5933, Buildings for Nanoscale Research and Beyond, pp. 1-13, 2005.
    7.郭柏辰(2008),「高科技廠房之設備及管線振動量測系統」,國立臺灣大學工學院工程科學及海洋工程研究所碩士論文,指導教授洪振發。
    8.吳國翔(2009),「台南科技園區環境振動長期變化之研究」,國立成功大學土木工程研究所碩士論文,指導教授倪勝火。
    9.蔡尚諺(2006),「自動化載具運行引致之廠房樓版微振動分析」國立交通大學土木工程學系碩士班碩士論文,指導教授王彥博、李建良。
    10.Y.L.Xu.,X.J.Hong., Stochastic modelling of traffic-induced building vibration, Journal of Sound and Vibration 313 (2008) 149–170.
    11.S.H.Ju., Finite element investigation of traffic induced vibrations, Journal of Sound and Vibration 321 (2009) 837–853.
    12. M.Mhanna, M.Sadek, I.Shahrour, Numerical modeling of traffic-induced ground vibration, Computers and Geotechnics 39 (2012) 116–123.
    13.S.H.Ju.,H.H.Kuo.,S.W.Yu.,S.H.Ni., Investigation of vibration induced by moving cranes in high-tech factories, Journal of Low Frequency Noise, Vibration and Active Control 0(0).
    14.M.A.Lak.,G.Degrande.,G.Lombaert., The effect of road unevenness on the dynamic vehicle response and ground-borne vibrations due to road traffic, Soil DynamicsandEarthquakeEngineering31(2011)1357–1377.
    15.S.H.Ju.,H.H.Kuo., Experimental and Numerical Study of Wind-Induced Vibration in High-Tech Factories, J. Perform. Constr. Facil., 2020, 34(3): 04020026.
    16.G.Gao.,J.Chen.,J.Yang.,Y.Meng., Field measurement and FE prediction of vibration reduction due to pile-raft foundation for high-tech workshop, Soil Dynamics and Earthquake Engineering 101 (2017) 264–268.
    17.原田成俊(2019),「多軸向鉛心橡膠支承運用於科技廠房之研究」,國立成功大學土木工程研究所碩士論文,指導教授朱聖浩。
    18.S.H.Ju.,C.C.Yuantien.,W.K.Hsieh., Study of Lead Rubber Bearings for Vibration
    Reduction in High-Tech Factories, Appl. Sci. 2020, 10, 1502.
    19.L.Y.Lu.,T.Y.Lee.,S.Y.Juang.,S.W.Yeh., Polynomial friction pendulum isolators (PFPIs) for building floor isolation: An experimental and theoretical study, Engineering Structures 56 (2013) 970–982.
    20.M.Friehe.,C.Heinemeyer.,M.Feldmanna., Design of highly sensitive floors for human induced vibrations, Procedia Engineering 199 (2017) 2796–2801.
    21. Y.Q.Ni.,Z.G.Ying.,Z.H.Chen., Micro-vibration suppression of equipment supported on a floor incorporating magneto-rheological elastomer core, Journal of Sound and Vibration 330 (2011) 4369–4383.
    22.D.Tjepkema.,J.van Dijk., H.M.J.R.Soemers., Sensor fusion for active vibration isolation in precision equipment, Journal of Sound and Vibration 331 (2012) 735–749.
    23.T.Zhu.,B.Cazzolato.,W.S.P.Robertson.,A.Zander., Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation, Journal of Sound and Vibration 358 (2015) 48–73.
    24.Y.Araki.,S.Kawabata.,T.Asai.,T.Masui., Response of vibration-isolated object to ground motions with intense vertical accelerations, Engineering Structures 33 (2011) 3610–3619.
    25.Y.L.Xu.,A.X.Guo., Micro vibration control of coupled high tech equipment-building systems in vertical direction, International Journal of Solids and Structures 43 (2006) 6521–6534.
    26.M.M.Z.Shahadat.,T.Mizuno.,Y.Ishino.,M.Takasaki., Active vibration isolation using negative stiffness and displacement cancellation controls : Comparison based on vibration isolation performance, Control Engineering Practice 37 (2015) 55–66.
    27.L.Y.Lu.,P.R.Chen.,K.W.Pong., Theory and experiment of an inertia-type vertical isolation system for seismic protection of equipment, Journal of Sound and Vibration 366 (2016) 44–61.
    28.陳錦村(2020),「低頻振動之頻譜分析及其對高科技廠房精密儀器之影響」,國立臺灣大學工學院土木工程學系博士論文,指導教授張陸滿、羅俊雄。
    29.Verhaegen, M., Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica, Vol. 30, No. 1, pp. 61-74, 1994.
    30.Peeters, B. and de Roeck, G., Reference-based stochastic subspace identification for output-only modal analysis. Mechanical Systems and Signal Processing, Vol. 13, No. 16, pp. 855-878, 1999.
    31.Chen, J.D. and Loh, C.H., Tracking modal parameters of building structures from experimental studies and earthquake response measurements. Structural Health Monitoring - An International Journal, Vol. 16, No. 5, pp. 551-567, 2017.
    32. https://www.iamech.com.tw/,漢錸科技自動化型錄.
    33.https://www.youtube.com/watch?v=P2eMBJcyFwg&list=PLMdgsjvIPvOY_SMAOgDicJW8NkrqeJTmn&index=1 ,村田機械.
    34. https://www.mirle.com.tw/ ,盟立自動化股份有限公司.
    35. http://www.ckplas.com/ch/foup_13h.htm ,中勤實業股份有限公司
    36.https://www.daifuku.com/tw/solution/technology/wirelesspower/,DAIFUKU
    37. https://www.youtube.com/watch?v=-SCskPV00kU&t=192s , GlobalFoundries ITDC Fab 8.
    38. https://www.muratec.net/cfa/products/,村田機械
    39. https://www.moduleclean.com/index.php ,鈦華科技
    40. https://www.clyh.com.tw/ ,銓勵科技
    41. http://www.lkeng.com.tw/upload/pro/20100126093731500.pdf 。
    42. merican Petroleum Institute (API). Recommended practice for planning, designing and constructing fixed offshore platforms – load and resistance factor design. API RP 2A-LRFD. Washington: American Petroleum Institute; 1997,Jonkman B, Kilcher L. Turbsim user’s guide; version 1.06.00. Golden, CO, USA: National Renewable Energy Laboratory.
    43.Murthy, V.N.S, Soil Mechanics & Foundation Engineering, Vol II Foundation Engineering, Third Ed., Sai Kripa Technical Consultants, Bangalore, 1991.
    44. American Petroleum Institute (2002). “API Recommended Practice 2A-WSD - Planning, Designing, and Constructing Fixed Offshore Platforms – Working Stress Design”. 21st ed. American Petroleum Institute. 2003.
    45. Specification for Octave-band and Fractional-octave-band Analog and Digital Filters, ANSI S1.11-2004, Feb. 2004, Standards Secretariat Acoustical Society of America.
    46. Specification for Octave-band and Fractional-octave-band Analog and Digital Filters, ANSI S1.11-2004, Feb. 2004, Standards Secretariat Acoustical Society of America.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE