簡易檢索 / 詳目顯示

研究生: 吳信德
Wu, Shin-Te
論文名稱: 透過指定點突變探討內切型纖維素分解酵素GsCelA特定胺基酸對於酵素的熱穩定性及活性以益於工業上之應用
Studies of the Thermostability and Activity of an Endoglucanase, GsCelA, via Site-Directed Mutagenesis for Industrial Applications
指導教授: 賀端華
Ho, Tuan-hua
共同指導教授: 余淑美
Yu, Su-May
張嘉修
Chang, Jo-Shu
張文綺
Chang, Wen-Chi
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 82
中文關鍵詞: 生質能源纖維素內切型纖維素分解酵
外文關鍵詞: biomass energy, cellulose, endo-1,4-β-D-glucanase
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 纖維素是D-葡萄糖以β-1,4-糖苷鍵組成的長鏈聚合物,分子式(C6H10O5)n,是維管束植物細胞壁的主要成分。臺灣每年達200萬公噸的農業廢棄物,其主要成份為木質纖維素,若能有效轉化木質纖維素為生質能源,不但能解決農業廢棄物的污染問題、日趨減少的能源問題,亦不與人類搶地爭糧。纖維素水解酵素分為三種類型,內切型纖維素水解酵素(Endo-1,4-β-D-glucanase ,EC 3.2.1.4)、外切型纖維素水解酵素(Exo-1,4-β-D-glucanase ,EC 3.2.1.91)與β-葡萄糖苷酵素(β-glucosidase ,EC 3.2.1.21);此三種酵素是將纖維素水解為葡萄糖發酵反應之速率決定步驟。本研究主要探討從稻稈堆肥中篩選出一株具有纖維水解酵素的細菌Geobacillus sp.。其中此菌具有一段基因長1104 bp,368個胺基酸所組成的endo-glucanase,命名為GsCelA,為glycosyl hydrolase family 5 (GHF5)。GsCelA能作用廣泛的溫度介於45 ℃~80 ℃,且具有極佳的熱穩定度。為了解蛋白質結構上胺基酸對於GsCelA的活性及熱穩定性的影響,因此將GsCelA胺基酸序列與其它glycosyl hydrolase family 5 (GHF5)酵素的胺基酸做序列比對,發現有七個位置的胺基酸是GsCelA特有的。將這七個位置做指定點突變,發現突變E128及P243會降低GsCelA活性,而突變Y195會增加GsCelA活性,但都不影響熱穩定性。在K57、E128、I168、A223及P243位置突變會降低酵素對於pH 5的耐受性,其中K57G降低22 %、E128L降低55 %、I168K降低28 %、A223R降低45 %及P243V降低35 %。有趣的是突變株T51W,其蛋白質降解速率要比GsCelA來的慢。由研究成果希望經由指定點突變(置換)來探討,突變位置對於酵素活性及其熱穩定度等之影響。對於不同要求的發酵特性,因應出相對條件,提高酵素的經濟效益。

    Cellulose is a polysaccharide consisting of a linear chain of several hundreds to over ten thousands β-1,4 linked D-glucose units. The formula of cellulouse is (C6H10O5)n, which is an important structural component of cell walls of vascular plants. There are two millions tons of agriculture wastes produced in Taiwan annually, and the main component is lignocellulose, a mixture of lignin- and cellulose-related molecules. Developing an efficient method to convert lignocellulose into biomass energy is can reduce the pollution generated by agriculture wastes and also to address the energy shortage problem. There are three types of cellulases: endo-1,4-β-D-glucanase (EC 3.2.1.4), exo-1,4-β-D-glucanase (EC 3.2.1.91), and β-glucosidase (EC 3.2.1.21), which can break down the polymer of cellulose into glucose. The soil bacterium Geobacillus sp.70PC53, originally isolated from a rice straw compost, synthesizes a glycosyl hydrolase family 5 (GHF5) endo-glucanase, GsCelA, which contains 368 amino acids. GsCelA has high level of thermostability and it can be used from 45 ℃ to 80 ℃. It retains 90 % of its original activity after incubation at 65C for 4 hrs. In order to investigate the structure/function relationship of GsCelA, the amino acid sequences of GsCelA were compared with other GHF5 glycosyl hydrolases. Seven amino acids of GsCelA appear to be unique because they do not exist in other GHF5 enzymes. These amino acids were mutated and impacts of these mutations on enzyme activity and thermostability were investigated. It was discovered that mutations of E128 and P243 reduced, but mutation of Y195 increased enyzme activity, yet all of them had no significant effect on thermostability. In contrast, mutations in K57, E128, I168, A223 and P243 reduced thermostability at pH 5. However, for the mutants at K57G, E128L, I168K, A223R and P243V reduced GsCelA activity by about 22 %, 55 %, 28 %, 45 % and 35 %, respectively. Another interesting observation was that the T51W mutant has a slower rate of self-truncation of C-terminal region than wild-type GsCelA. In conclusion, following the site-directed mutagenesis approach to investigating the activity and thermostability of GsCelA, I have revealed new information for improving GsCelA under suitable conditions, thus enhancing the economical benefit of using this enzyme for hydrolysis of cellulose.

    中文摘要.................................................................................................................... I Abstract.....................................................................................................................Ⅱ 誌謝......................................................................................................................... Ⅳ 目錄......................................................................................................................... Ⅴ 表目錄..................................................................................................................... Ⅷ 圖目錄..................................................................................................................... Ⅸ 第一章、 緒論 1.1前言.......................................................................................................................1 1.2生質能源...............................................................................................................1 1.3木質纖維素 Lignocellulose.................................................................................2 1.3.1 纖維素 Cellulose .......................................................................................2 1.3.2 半纖維素 Hemicellulose ...........................................................................2 1.3.3 木質素 Lignin............................................................................................3 1.4纖維水解酵素 Cellulase......................................................................................3 1.4.1內切型纖維素分解酵素........................................................................4 1.4.2外切型纖維素分解酵素........................................................................4 1.4.3 β-葡萄糖苷酶......................................................................................4 1.4.4 纖維分解酵素來源…………………………………………...…..….5 1.5 GsCelA的來源與特性…………………………………………...….....…...….5 1.6 定點突變(Site-directed mutagenesis)………………………………………6 1.7 纖維酒精製程(Cellulosic ethanol process)……..……………………….…….6 1.7.1分開水解與醱酵(SHF)……………………………………….………6 1.7.2同步醣化與醱酵(SSF)……………………………………..…………7 1.8 研究動機與目的…………………..……...………..………..………………….7 第二章、 材料與方法……………............................................................................8 2.1儀器設備...............................................................................................................8 2.2培養基及實驗試劑...............................................................................................8 2.2.1培養基……………………………………………………...….…….….…..8 2.2.2酵素特性分析緩衝液與試劑………………………………...………...…..9 2.2.3蛋白質純化緩衝液……………………………………………..….……….9 2.3實驗方法……………………………………………………………………….10 2.3.1 DNA相關操作技術………………………………………………..…......10 2.3.1.1 Plasmid DNA 抽取…………………………………….…………….10 2.3.1.2指定點突變(Site-Directed Mutagenesis)………………..…………...11 2.3.1.3 菌落PCR (Colony PCR)…………………………….………………12 2.3.2 Protein相關操作技術………………….……………….….……...……...13 2.3.2.1 誘導GsCelA大量表現……………………...……..………………..13 2.3.2.2 破菌………………………………………………….……………….13 2.3.2.3 FPLC純化GsCelA…………….…………….…….………….….…..14 2.3.2.4 SDS膠體電泳……………………………….………..….……..…….14 2.4 纖維素水解酵素活性測試………………………………..…………...……...17 2.4.1 CMC activity (Endo-glucanase)…………………………………………...17 2.4.2 GsCelA特性分析…………………………………………………………18 2.4.2.1 最適反應溫度………………………………………………………..18 2.4.2.2 最適反應pH值…………………………………………….…....…...18 2.4.2.3 熱穩定度……………………………………………….….……..…..18 2.4.2.4 pH值穩定度………………………………………………………..18 2.4.2.5 Swollen Avicel…………………………………..…….…..………..19 2.4.2.6 Swollen Avicel activity………………………………......…………19 2.5 GsCelA and GsCelA mutant self-truncation………………...………….……...20 2.5.1透析……………………………………………………………….……….20 2.5.2 GsCelA and GsCelA mutant self-truncation test…………….…….……...20 第三章、結果.......................................................................................................21 3.1 GsCelA-指定點突變(Site-Directed Mutagenesis)………………...…………..21 3.1.1 點突變之胺基酸…………………………………………….……………21 3.1.2 點突變於蛋白質結構之位置……………………………….……………21 3.1.3 指定點突變………………………………………………….……………22 3.1.4 GsCelA及GsCelA突變株之基因序列分析………………..……….…...22 3.1.5 GsCelA及GsCelA突變株之純化…………………………..…...………...22 3.2 GsCelA及GsCelA突變株之特性分析………………………….……………..23 3.2.1 最適反應溫度與熱穩定度……………………………………………….23 3.2.2 最適反應pH值與pH值穩定度……………………….………..….…….23 3.2.3 Avicel and Swollen avicel ……………………………….…………..……24 3.2.3.1 Swollen Avicel activity…………………………….………..………..24 3.2.3.2 Avicel and Swollen Avicel structure…………….…………...………24 3.3 GsCelA and GsCelA mutant self-truncation………………………….…….…24 第四章: 討論............................................................................................................26 參考文獻………………………………………………………………….………..73 附錄………………………………………………………………………….……..76

    Anbar, M., O. Gul, R. Lamed, U. O. Sezerman and E. A. Bayer (2012). "Improved Thermostability of Clostridium thermocellum Endoglucanase Cel8A by Using Consensus-Guided Mutagenesis." Applied and Environmental Microbiology 78(9): 3458-3464.

    Badieyan, S., D. R. Bevan and C. M. Zhang (2012). "Study and design of stability in GH5 cellulases." Biotechnology and Bioengineering 109(1): 31-44.

    Bhat, M. K. and S. Bhat (1997). "Cellulose degrading enzymes and their potential industrial applications." Biotechnology Advances 15(3-4): 583-620.

    Bisaria, V. S. and S. Mishra (1989). "Regulatory Aspects of Cellulase Biosynthesis and Secretion." Critical Reviews in Biotechnology 9(2): 61-103.

    Cullen, T. K. K. a. D. (1998). Enzymology and Molecular Genetics of Wood Degradation by White-Rot Fungi, John Wiley & Sons, Inc.

    Cheng, Y. S., Ko, T. P., Wu, T. H., Ma, Y., Huang, C. H., Lai, H. L., ... & Guo, R. T. (2011)." Crystal structure and substrate‐binding mode of cellulase 12A from Thermotoga maritima." Proteins 79(4), 1193-1204.

    Drissen, R. E. T., R. H. W. Maas, J. Tramper and H. H. Beeftink (2009). "Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation." Biocatalysis and Biotransformation 27(1): 27-35.

    Hakamada, Y., K. Endo, S. Takizawa, T. Kobayashi, T. Shirai, T. Yamane and S. Ito (2002). "Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans." Biochimica Et Biophysica Acta-General Subjects 1570(3): 174-180.

    Hakamada, Y., Y. Hatada, T. Ozawa, K. Ozaki, T. Kobayashi and S. Ito (2001). "Identification of thermostabilizing residues in a Bacillus alkaline cellulase by construction of chimeras from mesophilic and thermostable enzymes and site-directed mutagenesis." Fems Microbiology Letters 195(1): 67-72.

    Hakamada, Y., K. Koike, T. Yoshimatsu, H. Mori, T. Kobayashi and S. Ito (1997). "Thermostable alkaline cellulase from an alkaliphilic isolate, Bacillus sp. KSM-S237." Extremophiles 1(3): 151-156.
    Kadar, Z., Z. Szengyel and K. Reczey (2004). "Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol." Industrial Crops and Products 20(1): 103-110.

    Lynd, L. R., P. J. Weimer, W. H. van Zyl and I. S. Pretorius (2002). "Microbial cellulose utilization: Fundamentals and biotechnology." Microbiology and Molecular Biology Reviews 66(3): 506-+.

    Mawadza, C., R. Hatti-Kaul, R. Zvauya and B. Mattiasson (2000). "Purification and characterization of cellulases produced by two Bacillus strains." Journal of Biotechnology 83(3): 177-187.

    Miller, G. L. (1959). "Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar." Analytical Chemistry 31(3): 426-428.

    Ng, I. S., C. W. Li, Y. F. Yeh, P. T. Chen, J. L. Chir, C. H. Ma, S. M. Yu, T. H. Ho and C. G. Tong (2009). "A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures." Extremophiles 13(3): 425-435.

    Ni, J., M. Takehara and H. Watanabe (2010). "Identification of activity related amino acid mutations of a GH9 termite cellulase." Bioresour Technol 101(16): 6438-6443.

    Ozaki, K. and S. Ito (1991). "Purification and Properties of an Acid Endo-1,4-Beta-Glucanase from Bacillus Sp Ksm-330." Journal of General Microbiology 137: 41-48.

    Perez, J., J. Munoz-Dorado, T. de la Rubia and J. Martinez (2002). "Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview." Int Microbiol 5(2): 53-63.

    Robson, L. M. and G. H. Chambliss (1984). "Characterization of the Cellulolytic Activity of a Bacillus Isolate." Applied and Environmental Microbiology 47(5): 1039-1046.

    Rubin, E. M. (2008). "Genomics of cellulosic biofuels." Nature 454(7206): 841-845.

    Shaw, K. L., G. R. Grimsley, G. I. Yakovlev, A. A. Makarov and C. N. Pace (2001). "The effect of net charge on the solubility, activity, and stability of ribonuclease Sa." Protein Science 10(6): 1206-1215.

    Singh, V. K. and A. Kumar (1998). "Production and purification of an extracellular cellulase from Bacillus brevis VS-1." Biochemistry and Molecular Biology International 45(3): 443-452.

    Van den Burg, B. and V. G. H. Eijsink (2002). "Selection of mutations for increased protein stability." Current Opinion in Biotechnology 13(4): 333-337.

    Vu, V. H. and K. Kim (2012). "Improvement of Cellulase Activity Using Error-Prone Rolling Circle Amplification and Site-Directed Mutagenesis." Journal of Microbiology and Biotechnology 22(5): 607-613.

    Wonganu, B., K. Pootanakit, K. Boonyapakron, V. Champreda, S. Tanapongpipat and L. Eurwilaichitr (2008). "Cloning, expression and characterization of a thermotolerant endoglucanase from Syncephalastrum racemosum (BCC18080) in Pichia pastoris." Protein Expression and Purification 58(1): 78-86.

    Yi, Z. L. and Z. L. Wu (2010). "Mutations from a family-shuffling-library reveal amino acid residues responsible for the thermostability of endoglucanase CelA from Clostridium thermocellum." Biotechnology Letters 32(12): 1869-1875.

    齊倍慶(2001) ,從堆肥中篩選纖維素分解酵素生產菌及其酵素性質研究,國立清華大學生命科學系碩士論文。

    尤智立(2003) ,嗜高溫纖維分解菌纖維分解酵素的探討,國立中山大學生物科學研究所碩士論文。

    胡曉菁(2007),本土木黴菌之篩選及其纖維分解酵素之特性分析與應用研究,朝陽科技大學生物技術研究所碩士論文。

    郭家宏(2009),纖維素之溶解對其酵素醣化及發酵應用之研究,國立臺灣科技大學化學工程系博士學位論文。

    無法下載圖示 校內:2018-09-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE