簡易檢索 / 詳目顯示

研究生: 葉政諺
Yeh, Cheng-Yen
論文名稱: 極化敏感光學同調斷層掃描術量測雙折射材料光學參數之設計與研究
Measurements for the Optical Parameters of the Birefringent Materials by Using Polarization-Sensitive Optical Coherence Tomography
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 131
中文關鍵詞: 主軸極化干涉極化敏感光學同調性斷層掃描術熱光源雙折射折射係數厚度低同調干涉術
外文關鍵詞: thermal light, thickness, refractive index, birefringence, optical axis orientation, polarimetry, low coherence interferometry, Polarization-Sensitive Optical Coherence Tomogra
相關次數: 點閱:92下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學同調斷層掃描術(Optical Coherence Tomography)是一種新興的光學造影技術,其可對樣品提供非侵入式之微米(micrometer)級橫截面影像。在先前的研究中,已經發表了使用光學同調斷層掃描的技術進行厚度與折射係數的量測,且對於均質材料有良好的實驗結果。但實際上許多光學的材料都具有雙折射的特性,而使用上述傳統的光學同調斷層掃描術並沒有能力感測出因材料的雙折射所造成的光之偏振狀態改變的資訊。
    極化敏感光學同調斷層掃描(Polarization-Sensitivity Optical Coherence Tomography)是一種以極化干涉術為基礎的雙折射材料量測技術,此技術是以一個已知偏振態的光去探測樣品進而量測光穿透樣品後之光的偏振態變化所造成的干涉信號改變。因此,我們可以藉由從樣品的反射面反射回來的兩個正交的線性極化光之偏振態的關係來求取雙折射值。
    本實驗將針對一般的光學同調斷層掃描術的架構加以改良並使用熱光源以提高解析度。此架構也結合極化干涉術,使新的架構除了能夠量測單層樣品的厚度及折射率外,同時也可以量測樣品的雙折射及主軸角度。更進一步的由上述求得的參數彼此之間的關係計算得到尋常光折射率與非尋常光折射率,使得採用低同調干涉術在量測雙折射樣品上有更完整的功能。

    Optical coherence tomography is an emerging optical imaging technique that provides micrometer-scale cross-sectional images of tissue structure without invasion. In earlier research, there have been report of the measurement of refractive index (n) and thickness (t) by use of OCT, and the result is good for homogeneous material. However, many optical materials have birefringence property in practice, and this conventional OCT does not have the capability to sense the information in the change of polarization state caused by the birefringence of material.
    The PSOCT is a polarimetry-base birefringence measurement technique that uses a light of known polarization state to probe the sample and measures the changes in this state after propagation through the sample. Therefore, we can extract the phase retardation by the change of interferometric signal between orthogonal linear polarization modes at the reflective surface in a birefringence sample.
    In this study, we propose a new PSOCT structure by modifying the OCT that we have developed earlier. The new structure combines the polarimetry technique for measurement of the birefringence property and employs the thermal light source for the higher resolution. The new POSCT system can measure the thickness, refractive index, birefringence and optical axis orientation of an optical sample simultaneously. Besides, we can calculate the ne and no from the relationship between above parameters. Thus the system in measuring the birefringence material by use of low coherence interferometry can be more complete in extracting different parameters.

    Abstract I 中文摘要 III 致謝 V Table of Contents VI List of Figures X List of Tables XV Chapter 1 Introduction 1 1.1 Historical review 1 1.1.1 Review of OCT 1 1.1.2 Review of OCT in Measuring the Refractive Index and Thickness 2 1.1.3 Review of Ultrahigh-resolution OCT 4 1.1.4 Review of PSOCT 5 1.2 The Destination and Motivations for the Research 7 1.3 Overview of Chapters 7 Chapter 2 Theoretical Analysis 17 2.1 Polarized Light and Optical Properties of Birefringence 17 2.1.1 Polarized Light 17 2.1.2 Optical Properties of Birefringence 19 2.2 Basic Configuration of PSOCT 23 2.2.1 Jonse Matrix Calculation of PSOCT 25 2.2.1.1 Jonse Representation of Light in Reference Arm 25 2.2.1.2 Jonse Representation of Light in Sample Arm 26 2.2.1.3 Detection of Interferometric Signal 28 2.2.2 Resolution of PSOCT System 31 2.2.2.1 Axial Resolution 31 2.2.2.2 Lateral Resolution 33 2.2.3 Sensitivity 34 2.3 Effects of Light in Bulk Material 35 2.3.1 Scattering and Absorption 35 2.3.2 The Effect of Dispersion on PSOCT 37 2.3.2.1 Dispersion in Refractive Index and Coherence Length 37 2.3.2.2 Dispersed Light Waves in PSOCT 39 2.3.3 Discussion 41 2.4 Determine the Thickness and the Refractive Index of a Single-layer Sample 42 2.4.1 The Structure of the Measurement System 42 2.4.2 Principle of Measurement 43 2.4.3 Discussion 44 Chapter 3 New PSOCT System 55 3.1 Introduction 55 3.2 New PSOCT System for Measurement of Optical Parameters 55 3.2.1 Using the Thermal Light Source 56 3.2.2 Measurement of the Thickness and the Refractive Index 56 3.2.3 Measurement of the Phase Retardation and the Optical Axis Orientation 59 3.2.4 Calculating ne and no 62 3.3 Discussion 63 Chapter 4 Signal Processing Method 68 4.1 Signal Modulation and Demodulation Techniques 68 4.2 The Procedure for Determining the Locations of Peaks of the Interferometric Signal 69 4.2.1 Demodulation of the Interferometric Signal 69 4.2.2 Peak Detection 71 4.2.3 Simulation of the Demodulation Method and the Peak Detection 72 4.3 The Procedure for Determining the Amplitude and the Phase of the Interferometric Signal 73 4.3.1 Introduction 73 4.3.2 Hilbert Transform 74 4.3.2.1 Analytic Representation 74 4.3.2.2 Simulation of the Extraction Method of Amplitude and Phase 76 4.3.3 Discussion 76 Chapter 5 Experiment with New PSOCT System 84 5.1 Introduction 84 5.2 Measurement System Set up and Signal Processing 84 5.2.1 System Configuration 84 5.2.2 Calibration in the Measurement System 86 5.2.3 Procedure of Signal Process 88 5.3 Experiment Steps and Results 89 5.3.1 Axial Resolution and Dispersive Interferometric Signals 89 5.3.2 Measurement of the Refractive Index and the Thickness 90 5.3.3 Measurement of the Phase Retardation and the Optical Axis Orientation 92 5.3.3.1 Zero-order Quarter-Wave Plate 93 5.3.3.2 Measurement of the Optical axis Orientation 94 5.3.3.3 Multi-order Quarter-Wave Plate 95 5.4 Discussion 97 5.4.1 Discussion on the Refractive Index and the Thickness 97 5.4.2 Discussion on the Phase Retardation and the Optical Axis Orientation 98 5.4.3 Discussion on the Calculated ne and no 99 5.4.4 Conclusion 100 Chapter 6 Conclusion and Suggestions 120 6.1 Conclusions 120 6.2 Suggestions 121 6.2.1 Compensate the Dispersion by Numerical Method 121 6.2.2 Combining the New PSOCT with Commercial Microscopy 122 6.2.3 Powerful Instruments 122 6.2.4 Full-Field Measurement of our New PSOCT 123 Bibliography 124 Autobiography 131

    Beaurepaire, E., Boccara, A. C., Lebec, M., Blanchot L., and Saint-Jalmes H., "Full-field optical coherence tomography," Opt. Lett., Vol. 23, pp.244-246, 1998.
    Bouma, B. E. and Tearney, G. J., Handbook of optical coherence tomography, Marcel Dekker, New York, 2002.
    Bouma, B. E. and Tearney, G. J., Boppart, S. A., Hee, M. R. Brezinski, M. E., Fujimoto, J. G., "High-resolution optical coherence tomography imaging using a mode-lock Ti:Al2O3 laser source," Opt. Lett. Vol. 20, pp. 1486-1488, 1995.
    Bracewell, R., The Fourier Transform and Its Applications, McGraw-Hill, 2nd ed, 1986.
    Dave, D. P., Akkin, T. and Milner, T. E., "Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefirngence," Opt. Lett., Vol. 28, pp. 1775-1777, 2003.
    de Boer, J. F., Milner, T. E., van Gemert, M. J. C., and Nelson, J.S., "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett., Vol. 22, pp. 934-936, 1997.
    Fercher, A.F., Hitzenberger, C.K., Sticker, M. E., Moreno-Barriuso E., Leitgeb, R., Drexler, W., and Sattmann, H., "A thermal light source technique for optical coherence tomography," Opt. Commun., Vol. 185, pp.57-64,2000.
    Fercher, A.F., Hitzenberger, C.K., Sticker, M., Zawadzki, R., "Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography," Opt. Express, Vol.9, pp. 610-615,2001
    Fercher, A.F., Drexler, W., Hitzenberger, C. K., Lasser, T., “Optical coherence tomography-principles and applications,” Rep. Prog. Phys., Vol. 66, 239-303, 2003.
    Fukano, T. and Yamaguchi, I., "Simultaneous measurement of thickness and refractive indices of multiple layers by a low coherence confocal microscope," Opt. Lett., Vol. 21, pp. 1942-1944, 1996.
    Goodman, J. W., Statistical optics, New York, NY, John Wiley and Sons,1985.
    Haruna, M., Ohmi, M., Mitsuyama, T., Tajiri, H., Maruyama, H., and Hashimoto, M., "Simultaneous measurement of the phase and group indices and thickness of transparent plates by low-coherence interferometry", Opt. Lett., vol. 23, pp. 966-968, 1998.
    Hecht, E., Optics, Addison Wesley, third edition, 1998.
    Hee, M.R., Huang, D., Swanson, E.A., and Fujimoto, J.G., "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B, Vol. 9, pp. 903-908, 1992
    Hillman, T. R., Sampson, D. D., "The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography"Opt. Express, Vol 13, pp. 1860-1874,2005
    Hitzenberger, C. K., Baumgartner, A. and Drexler, W., "Dispersion effects in partical coherence interferometry: Implications for intraocular ranging," Journal of Biomedical optics, Vol. 4, pp. 144-151,1999
    Hitzenberger, C. K., Goetzinger, E., Sticker, M., Pircher, M., and Fercher, A. F., "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Optics Express. Vol. 9, pp. 780-790, 2001.
    Hoeling, B.M., Fernandez, A.D., Haskell, R.C., Huang, E., Myers, W.R., Petersen, D.C., Ungersma, S.E., Wan, G., and Williams, M.E., "An optical coherence microscope for 3-dimensional imaging in developmental biology," Optics Express. vol. 6, pp. 136-146, 2000.
    Huang, H. D., Swanson, E. A., Lin, C. P., Schuman, J. S., Sinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K., Puliafito, C. A., and Fujimoto, J.G., "Optical coherence tomography," Science, Vol. 254, pp. 1178-1181, 1991.
    Izatt, J. A., Hee, M. R., Owen, G. M., Swanson, E. A., and Fujimoto, J. G., “Optical coherence microscopy in scattering media,” Opt. Lett., Vol. 19, pp. 590-592, 1994
    Kam, Z., Agard, D.A., and Sedat, J.W., "Three-dimensional microscopy in thick biological samples: A fresh approach for adjusting focus and correcting spherical aberration," Bioimaging, vol. 5, pp. 40-49, 1997.
    Kwong, K.F., Yankelevich, D., Chu, K.C., Heritage, J.P., and Dienes, A., "400-Hz mechanical scanning optical delay ilne," Opt. Lett., vol. 18, pp.558-560, 1993.
    Laude, B., De Martino, A., Drevillon, B., Benatter, L., and Schwartz, L., "Full-field optical coherence tomography with thermal light," Appl. Opt., Vol. 41, pp.6637-6644,2002.
    Lo, Y. L., Kuo, C. I., Chuang, C.H., and Yan, Z.Z., "Optical coherence tomography system with no high-precision scanning stage and stage controller," Appl. Opt., Vol. 43, pp. 4142-4149,2004
    Lo, Y. L., Yen, C. C. and Chen, S. J., "Fiber type of optical coherence tomography with an auto-focus device," Opt. Comm., Vol. 259, pp. 70-77, 2005.
    Lu, C. W., "Study of optical Doppler coherence tomography," National Taiwan University Master Thesis, 2001.
    Maruyama, H., Inoue, S., Mitsuyama, T., Ohmi, M., and Haruna, M., "Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness," Appl. Opt., vol. 41, pp. 1315-1322, 2002.
    Moreau, J., Loriette, V. and Boccara, A., "Full-field birefringence imaging by thermal light polarization-sensitive optical coherence tomography. I. Theory,"Appl. Opt., Vol. 42, pp.3800-3810,2003.
    Nishi, H., Itadani, T., Ohmi, M., and Haruna, M. "Tomography-based measurement of refractive index and thickness profiles by the low coherence interferometry,"16th Int'1 conf. Opt.Fiber Sensors (OFS-16), pp.Fr1-4,Proc. pp. 764-767,2003.
    Oh, J. T. and Kim, S. W., "Polarization-sensitive optical coherence tomography for photoelasticity testing of galss/epoxy composites"Opt. Express, Vol. 11, pp.1669-1676,2003
    Ohmi, M., ohnishi, Y., Yoden, K., and Haruna, M., "In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry," IEEE Trans. Biomed. Eng., vol. 47, pp. 1266-1270, 2000.
    Pavliček, P. and Soubusta, J., "Measurement of the influence of dispersion on white-light interferometry," Appl. Opt., Vol. 43, pp. 766-770, 2004.
    Roth, J. E., Kozak, J. A., Yazdanfar, S., Rollins, A. M., and Izatt, J. A., "Simplified method for polarization-sensitive optical coherence tomography," Opt. Lett., Vol. 26, pp. 1069-1071, 2001.
    Schoenenberger, K., Colston, B. W., Jr, Maitland, D. J., Da Silva, L. B., and Everett, M. J., "Mapping of birefringence and thermal damage in tissue by sue of polarization-sensitive optical coherence tomography,"Appl.Opt., Vol 37, pp.6026-6036, 1998.
    Sticker, M., Hitzenberger, C. K., Leitgeb, R., Fercher, A. F., "Quantitative differential phase measurement and imaging in transparent and turbid media using optical coherence tomography,"Opt. Lett., Vol. 26, pp. 518-520, 2001.
    Swanson, E.A., Huang, D., Hee, M.R., Fujimoto, J.G., Lin, C.P., and Puliafito, C.A., "High-speed optical coherence domain reflectometry," Opt. Lett., vol. 17, pp. 151-153, 1992.
    Tearney, G. J., Bouma, B. E., and Fujimoto, J. G., "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett., vol. 22, pp. 1811-1813, 1997.
    Tearney, G. J., Brezinski, M. E., Southern, J. F., Bouma, B. E., Hee, M. R., and Fujimoto, J. G., "Determination of the refractive index of highly scattering human tissue by optical coherence tomography," Opt. Lett., Vol. 20, pp. 2258-2261, 1995.
    Tearney, G.J., Bouma, B.E., Boppart, S.A., Golubovic, B.E., Swanson, A., and Fujimoto, J.G., "Rapid acquisition of in vivo biological images by use of optical coherence tomography," Opt. Lett., vol. 21, pp.1408-1410, 1996.
    Vabre, L., Dubois, A. and Boccara, A. C., "Thermal-light full-field optical coherence tomography," Opt. Lett., Vol. 27, pp. 530-532, 2002.
    Van Engen, A. G., Diddams, S. and Clement, T. S., “Dispersion measurements of water with white-light interferometry,” Appl. Opt., Vol. 37, pp. 5679-5686, 1998.
    Wrexler, W., Morgner, U., Kärtner, F. X., Pitris, C., Boppart, S. A., Li, X. D., Ippen, E. P., and Fujimoto, J. G., "In vivo ultrahigh-resolution optical coherence tomography,"Opt. Lett., Vol.24, pp. 1221-1223, 1999
    Yariv, A. and Yeh, P., Optical waves in crystal, John Wiley & Sons, Inc., Ch4, 1984
    Yeh, P., Gu, C., Optics of Liquid Crystal Displays, Ch4., Wiley Interscience, New York, 1999.
    Zhao, Y., Chen, Z., Saxer, C., Xiang, S., de Boer, J. F., Nelson, J. S., "phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,"Opt. Lett., Vol. 25, pp. 114-116,2000.

    下載圖示 校內:2011-07-26公開
    校外:2011-07-26公開
    QR CODE