| 研究生: |
崔騰 Cui, Teng |
|---|---|
| 論文名稱: |
線上與實體餐飲店的區位特徵差異分析—以深圳市為例 A Study On The Location Differences Between Online And Offline Restaurants— A Case Study of Shenzhen City |
| 指導教授: |
林峰田
Lin, Feng-Tian 孔憲法 Kong, Xian-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 實體餐飲店 、線上餐飲店 、人口密度 、道路密度 、平均房價 、多變量分析 、區位特征差異 |
| 外文關鍵詞: | Offline restaurant, Online restaurants, Population density factor, The average house prices factor, Multiple linear regression analysis, Regional characteristic difference |
| 相關次數: | 點閱:132 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在中國隨著O2O電子商務的流行和普及,產生了像“美團”、“餓了麼”等O2O互聯網企業,使得人們獲取信息的能力空前加強,並對城市實體商業經營產生了重大影響。同時,物流業的即時配送發展迅猛,讓步行距離不再是限制人們消費的主要因素,線上餐飲成為人們飲食消費的常態。研究新技術下城市餐飲業的空間分佈,有利於瞭解餐飲業的發展現狀,對引導產業發展有重要意義。但變遷的趨勢,目前並沒有成型的研究機制,並且變化機制也有待進一步的研究。本次研究以深圳市為例,通過互聯網開放數據獲取“美團”、“安居客”等大數據資料。相較於傳統走訪式的空間統計方法,互聯網大數據存在數據體量大、資料類別豐富、定位精准等特點。本次研究以城市餐飲業空間佈局規律為切入點,在城市中心地理論、區位論、地租理論的指導下,採用核密度分析、空間自相關以及多變量分析等方法,從總體和局部對比實體餐飲店和線上餐飲店的分佈特徵。进而探討兩種餐飲店形態和人口密度、交通因素和平均房價的關係。本次研究結果如下:
(1)深圳市實體和線上餐飲店的密度都呈現“西密東疏、南密北疏、沿海密,內陸疏”的空間格局,以深圳市地鐵分佈形成線上餐飲活躍區域。平均消费和网络口碑随着等级的提升逐漸向高密度核心區轉移。
(2)人口密度和道路密度與两种餐飲店相关性較大,人口和道路密集的街道两种餐飲店也聚集分布;人口密度与中档消费餐饮店相关性较大,道路密度與中低檔餐飲店相关性较大;餐飲店距離公交車站和地鐵車站越遠的街道,餐飲店越稀疏;平均房價因素與餐飲店密度分布相关性較低,但平均房價與高檔消費層級和高網絡口碑的实体店相关性较高,說明高品質服務的實體店选址在高房价地區的可能性较大;平均房價對两种餐飲店網絡口碑的相關性較低,说明网络口碑的好坏不依赖房价的高低。
(3)多變量分析下,对深圳市餐饮业的影响表现为,道路密度因素>人口密度因素>平均房价因素,人口密度對實體餐飲店密度的相关系数更高,而道路密度對線上餐飲店密度的相关系数更高。实体店作为影响因素后,回归方程拟合度非常高,两者相似度极高。這背後的原因可能是,雖然電子商務發展迅速,同時人們獲取餐飲資訊的能力也不斷加強,但是整體的空間結構、規劃方式和人们的生活方式沒有發生改變,線上餐飲店還是當前城市結構下对實體餐飲店的重要補充。
With the popularization of the O2O e-commerce, China appeared many O2O Internet companies such as "Mei Tuan" and "E Le Me". Which make people access to information strengthens and has significant influenced on the offline restaurants in the city. At the same time, instant delivery of the logistics industry grows rapidly, and it makes walking distance is not the main factor to restrict customers to make eating choice. Selecting food online has become the normalcy for Chinese customers. Studying the spatial distribution of urban catering industry under new technology is helpful to understand the development status of catering industry and is of great significance to guide the development of the industry. Shenzhen city is taken as an example in this study,and the big data comes from the open data of "Mei Tuan" and "An Ju Ke" APP. Compared with the traditional visiting-type spatial statistical method, the big data of the Internet is characterized by large data volume, abundant data categories and accurate positioning. In this study, the spatial distribution rules of urban catering industry are taken as the starting point. Under the guidance of Urban Central Location Theory and Land Rent Theory, Kernel Density Analysis, Spatial Autocorrelation and Multivariate Analysis are adopted to compare the distribution characteristics of offline and online restaurants from the overall and part perspectives. Then the relationship between the two types of restaurants and local population density, traffic factors and average housing price was discussed. The results are as follows:
(1) The spatial distribution: look from the density, both of entities and online restaurants being assemble trend, Which appears "Less in the east and more in the west",“The south is dense and the north is sparse”,“The coast is dense and the interior is sparse” spatial pattern; From the point of view of the average consumption level and the level of Internet word-of-mouth, the restaurants of each consumption level and word-of-mouth level all present in Futian district and Luohu district, forming the core and diverging to the periphery. In terms of correlation, offline restaurants are more dependent on low- medium consumption, while online restaurants are more dependent on medium consumption and more concerned about word-of-mouth.
(2) The population density has an impact on the pattern of two types of restaurants, especially on medium consumption restaurants. Most of densely populated street district are also packed with offline and online restaurants. However, under different population density levels, the aggregation degree of physical and online restaurants is different. The road density factor has a larger influence on the medium and low-grade restaurants. Under the different road density grades, the aggregation degree of offline and online restaurants is different. The distance from restaurants to buses and subway stations has an impact on the distribution of two types of restaurants. The closer the distance, the more concentrated the restaurants are. The average house prices factors on the pattern of establishments were less affected, but prices for high-end consumption level and the impact of high Internet word of mouth is significant, shows that the high-quality service offline restaurants more tend to house prices higher areas. However, the correlation between house price and consumption level and word of mouth of online is relatively low, indicating that high-end consumption and restaurant service with high word of mouth are more inclined to brick-and-mortar stores.
(3) Under multiple linear regression analysis, population density has a greater positive impact on the density of offline restaurants, while road density has a greater positive impact on the density of online restaurants. Pattern of online and offline restaurants are similar, where offline restaurants gather, online restaurants will also gather. The reason may be that even although the ability of people to obtain restaurants information has been constantly strengthened by O2O e-commerce, but the overall spatial structure、 planning method and people's lifestyle have not changed in Shenzhen city, so online restaurants are still an important supplement to the distribution of offline restaurants under the current urban structure.
丁寧,楚新正。烏魯木齊市餐飲業空間格局及其影響因素研。伊犁師範學院學報,(1):37-41(2012)。
方遠平,閆小培。服務業區位論:概念、理論及研究框架,人文地理,(5):12-16(2008)。
王士君,浩飛龍,薑麗麗。長春市大型商業網點的區位特徵及其影響因素[J]. 地理學報,70(6):893 – 905(2015)。
王法輝。本地生活服務業O2O商業模式研究。北京;首都師範大學碩士論文(2017)。
王建竹。資訊化下城市服務業的空間發展趨勢——以北京市餐飲服務業為例,城市問題,11):90-95(2014)。
王祥利。長沙市商業網點佈局研究[D]. 長沙:湖南大學(2011)。
王宇渠,陳忠暖,覃水嬌。地鐵站點可達性、客流與站點商圈 商業結構關係研究——以廣州市為例[J]. 人文地理,(4):66 – 71(2015)。
王耀中,賀輝。基於中心地理論的服務業空間佈局研究新進展。湖南財政經濟學院學報,30(4): 124-132(2014)。
何鳳丹。O2O商業模式評價研究--以美團點評為例。湖南;湖南大學碩士論文(2018)。
李花,張志斌,王偉軍。 蘭州市大中型超市的空間分佈格局及其影響因素[J]. 經濟地理,36(9):85 – 93(2016)。
李新陽。上海市中心城區餐飲業區位研究。上海:同濟大學碩士論文(2016)。
周春山,羅彥,尚嫣然。中國城市商業地理學的研究進展。地理學報,59(6):1028-1036(2004)。
肖琛,陳雯,袁豐等。 大城市內部連鎖超市空間分佈格局及其區位選擇——以南京蘇果超市為例[J]. 地理研究,32(3):465 – 475(2013)。
周琳。掘金“懶人經濟” O2O引領消費升級。中國中小企業(2017)。
周藝,戚智勇。基於中心地理論的鄉村聚落發展模式及規劃探析。華中建築,(5):111-114 (2016)。
周麟,沈體雁。大城市內部服務業區位研究進展。地理科學進展,35(4):409-419(2016)。
孟巍。電子商務概念研究。消費導刊。(2)120-122(2017)。
高靜。大數據時代下餐飲店變革。中國國際財經,(14):12-13(2017)。
徐建華。武漢市中心城區O2O團購、實體商舖分佈的可達性比較研究,湖北;華中師範大學碩士論文(2017)。
秦蕭,甄峰,朱壽佳。基於網路口碑度的南京城區餐飲業空間分佈格局研究——以大眾點評網為例,地理科學,34(7):810-817(2014)。
張旭,徐逸倫。南京市餐飲設施空間分佈及其影響因素研究。熱帶地理,29(4):362-367(2009)。
張京娟。中小城市餐飲業空間佈局研究。甘肅:蘭州大學碩士論文(2014)。
張春雨。餐飲外賣O2O物流配送實施策略及評價研究。北京;華北電力大學碩士論文(2017)。
張貞冰,陳銀蓉,趙亮等。基於中心地理論的中國城市群空間自組織演化解析;經濟地理,34(7):44-51(2014)。
梁璐。城市餐飲業的空間格局及其影響因素分析——以西安市為例。西北大學學報:自然科學版,37(6):925-930(2007)。
許寬。基於網路評價的長沙城區餐飲業空間分佈研究。長沙:湖南師範大學碩士論(2016)。
陳林生。聚集效應、中心地理論與區域經濟協調發展。財經科學,(1):107-109(2004)。
陳蔚珊,柳林,梁育填。廣州軌道交通樞紐零售業的特徵聚類及時空演變[J]. 地理學報,70(6):879 - 892(2015)。
陸新藝。即時配送現狀、問題與對策研究 ——以餐飲外賣為例。企業管理與發展,(6)452(2019)。
程易易。成都市中心區餐飲業空間結構及影響因素研究。成都:西南交通大學碩士論文(2017)。
舒舍玉,王潤,孫豔偉等。城市餐飲業的空間格局及影響因素分析——以廈門市為例。熱帶地理,32(2):134-140(2012)。
蔡曉梅,甘巧林,張朝枝。廣州飲食文化景觀的空間特徵及其形成機理分析。社會科學家,(2):95-98(2004)。
譚欣,黃大全,趙星爍。北京市主城區餐館空間分佈格局研究。旅遊學刊,31(2):75-85(2016)。
顧朝林。人文地理學導論。北京:科學出版社,105(2012)。
Anderson W P, Chatterjee L, Lakshmanan T R.E-commerce, transportation, and economic geography. Growth & Change, 34(4):415-432 (2003).
Austin S B Melly S J, Sanchez B N et al. Clustering of fast-food restaurants around schools: a novel Application of spatial statistics to the study of food environments, American Journal of Public Health, 95(9): 1575-1581 (2005).
Berry&Garrison. The Functional Bases of the Central Place Hierarchy. Economic Geography, (2): 145-154(1958).
Black W. Retail Geography[J]. Economic Geography3:303(1982).
Bolen W H. Contemporary retailing[M]. Prentice Hall (1988).
Borgers A,Vosters C. Assessing preferences for mega shopping centers:A conjoint measurement approach[J]. Journal of Retailing & Consumer Services,18(4):322 – 332(2011).
Boschma R, Weltevreden J. “The Evolutionary Nature of B2C E-commerce in Inner Cities”, in “E-commerce, E-business and the Dynamics of Economic Development”. Alders hot (2004).
Cao X J, Chen Q, Choo S. Geographic distribution of e-shopping. Transportation Research Record Journal of the Transportation Research Board, (2383): 18-26(2013).
Cao X J. The relationships between E-shopping and store shopping in the shopping process of search goods. Transportation Research Part A Policy & Practice, 46(7): 993-1002(2012).
Cao X J, Xu Z, Douma F. The interactions between e-shopping and traditional in-store shopping:an application of structural equations model Transportation,39(5):957-974(2012).
Cairncross F. The Death of Distance: How the Communications Revolution is Changing Our Lives. Harvard Business Press (2001).
Calderwood E, Freathy P. Consumer mobility in the Scottish isles: The impact of internet adoption upon retail travel patterns. Transportation Research Part A Policy & Practice,59(1): 192-203(2014).
Comi A, Nuzzolo A. Exploring the relationships between e-shopping attitudes and urban freight transport. Transportation Research Procedia, 12: 399-412(2016).
Chou T Y, Hsu C L, Chen M C. A fuzzy multi-criteria decision model for international tourist hotels location selection. International Journal of Hospitality Management,27(2): 293-301(2008).
Christaller W. Die Zentralen Orte in Suddeutschland. Jena: Gustav Fischer Drennan M P,Kelly H F. Measuring urban agglomeration economies with office rent[J]. Journal of Economic Geography,11(3):481 – 507(1933).
Ferrell C. Home-Based Teleshopping and Shopping Travel: Where Do People Find the Time? Transportation Research Record Journal of the Transportation Research Board, (1):212-223(2005).
Gleaser E L,Gasper Information technology and the future of cities .Harvard institute of Economic Research Working paper ,43(1);136-156(1998).
Gwohshiung T,Teng M H,Chen J J,et al. Multicriteria selection for a restaurant location in Taipei.International Journal of Hospitality Management ,21(2):171-187(2002).
Hernandez T, Gomez-Insausti R, Biasiotto M. Non-store retailing and shopping central vitality.Journal of Shopping Central Research, 8(2): 58-81 (2001).
Hsiao M H. Shopping mode choice: Physical store shopping versus e-shopping. Transportation Research Part E Logistics & Transportation Review,45(1):86-95(2009).
Irawan M Z, Wirza E. Understanding the Effect of Online Shopping Behavior on Shopping Travel Demand through Structural Equation Modeling. Journal of the Eastern Asia Society for Transportation Studies, 11: 514-625(2015).
Krizek K, Li Y, Handy S. Spatial attributes and patterns of use in household-relate information and communications technology activity. Transportation Research Record Journal of the Transportation Research Board: 252-259(2005).
Losch, A. The economics of location. New haven, Conn: Yale University Press, 1-15(1954).
Morgan K.The exaggerated death of geography:Localized learning,innovation and uneven development.Technology,89(1):32-49(2001).
Oort F, Weltevreden J, Farag S, et al. E-shopping in the Netherlands: Does geography matter? Environment & Planning B Planning & Design, 33(1): 59-74(2006).
Picone G A,Ridley D B,Zandbergen P A. Distance decreases with differentiation:Strategic agglomeration by retailers.[J]. International Journal of Industrial Organization,27(3): 463 - 473(2009).
Prayag G Landre M, Ryan C. Restaurant location in Hamilton, New Zealand: clustering patterns from 1996 to 2008. International Journal of Contemporary Hospitality Management,24(3): 430-450 (2012).
Reilly W J. The Law of Retail Gravitation[J]. American Journal of Sociology (1931).
Schaefer A D, Luke R H5 Green J. Attitudes of restaurant site selection executives toward various people magnets. Journal of Restaurant&Foodservice Marketing,1(3): 1-14(1996).
Sim L L,Koi S M. Singapore's Internet shoppers and their impact on traditional shopping patterns.Journal of Retailing&Consumer Services,9(2):115-124(2002).
Smith S L J. Location patterns of urban restaurants, Annals of Tourism Research,12(4): 581-602(1985).
Steinfield C, Wit D D, Adelaar T, et al. Pillars of virtual enterprise: leveraging physical assets in the new economy. Info, 3(3):203-213(2001).
Swinyard W R, Smith S M. Why people (don't) shop online: A lifestyle study of the internet consumer. Psychology & Marketing, 20(7):567-597 (2003).
Tacken M. Effects of tele shopping on the use of time and space. Transportation Research Record, 1285: 89-91(1990).
Wall G, Dudycha D, Hutchinson J. Point pattern analyses of accommodation in Toronto. Annals of Tourism Research,12(4): 603-618 (1985).
Weltevreden J W J, Rietbergen T V. E-shopping versus city centre shopping: The role of perceived city centre attractiveness. Tijdschrift Voor Economische En Sociale Geografie,98(1):68-85(2007).
Weltevreden J W J. Substitution or complementary? How the Internet changes city central shopping. Journal of Retailing & Consumer Services,14(3):192-207(2007).
Zhai Q, Cao X, Mokhtarian P L, et al. The interactions between E-shopping and store shopping in the shopping process for search goods and experience goods.Transportation doi: 10.1007/s11116-016-9683-9(2016).
Zhou Y, Wang X. Explore the relationship between online shopping and shopping trips: An analysis with the 2009 NHTS data. Transportation Research Part A Policy & Practice,70:1-9(2014).
校內:立即公開