簡易檢索 / 詳目顯示

研究生: 蔡昀志
Tsai, Yun-Chih
論文名稱: 以氧化矽剝蝕法與共沉澱法合成 metal-silicate 孔洞材料及應用之研究
Synthesis and Application of Porous Metal-Silicate Materials by Silicate-Exfoliation Method and Co-Precipitation Method
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 77
中文關鍵詞: metal-silicate材料氧化矽剝蝕法共沉澱法
外文關鍵詞: metal-silicate materials, silicate-exfoliation method, co-precipitation method
相關次數: 點閱:113下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • (1) Copper-silicate孔洞材料
    本章節主旨在於,利用兩種簡便的合成手法-氧化矽剝蝕法與共沉澱法,再搭配矽酸鈉的使用下,回收重金屬廢液中的銅離子,進而合成出具有高表面積、高金屬氧化物分散性之copper-silicate孔洞材料,並探討兩者結構上的差異。以往製備孔洞材料的研究中,常利用有機模板和生成物間的作用力,生成與模板具有相似結構之構型的材料,但必須利用酸洗或是高溫鍛燒的方式來移除模板,實驗過程繁複、成本較高且容易產生CO、CO2、NOx或SOx等有害物質。
    本研究中的氧化矽剝蝕法則是先製備出氫氧化銅作為金屬模板,再加入矽酸鈉使材料在鹼性環境下進行水熱反應,使矽酸鹽對金屬模板進行剝蝕之後再與其結合,且由於氫氧化銅模板和silicate兩者的晶格大小不匹配,重組後結構具有捲曲力,可形成具有管狀結構的copper-silicate;而共沉澱法的實驗過程與結果更能穩定控制,由金屬前驅物溶液與矽酸鈉混和後,再以鹼源調整使其沉澱,在重金屬廢液回收的環節上,能因應製程放大後的機械設備。在實驗參數的調控方面,藉由改變水熱反應pH值、水熱反應時間、金屬/氧化矽比例、反應濃度等實驗參數,控制實驗路徑及最佳合成條件。最後,兩種合成方法皆具有改善工業廢棄物汙染的潛力,而在應用端上各有發展的面向。
    (2) Manganese/Cerium-silicate & Copper/Manganese/Cerium-silicate孔洞材料
    本論文將同時以Mn(NO3)2和Ce(NO3)3為金屬離子前驅物,與矽酸鈉以氧化矽剝蝕法為前提合成manganese/cerium-silicate,改變以往使用單一金屬前驅物進行metal-silicate的開發,透過調整水熱反應的pH值、水熱反應時間等各種變因,以觀察材料結構和性質的影響,並藉由調整前驅物劑量和鍛燒溫度,可使催化劑中主成份達到最適當的比例關係。最後嘗試以雙金屬氧化矽、三金屬氧化矽之孔洞材料進行SCR/NO的測試,希望能初步建立探討SCR/NO研究之方針。

    Two methods are proposed for the synthesis of copper-silicate materials and manganese/cerium-silicate materials. The first method, referred to as the silicate-exfoliation method, is used to synthesize copper-silicate and manganese/cerium-silicate materials, while the second method, referred to as the co-precipitation method, is used to synthesize copper-silicate materials only. In the silicate-exfoliation method, copper hydroxide platelets are precipitated by adding 2.0 M of NaOH aqueous solution to diluted Cu2+ wastewater and then mixing the resulting gel solution with sodium silicate. Following hydrothermal treatment, the porous metal silicates are filtrated, washed and then dried at 70oC. In the co-precipitation method, copper ions are removed from wastewater directly without hydrothermal treatment by mixing the wastewater with sodium silicate and then adjusting the pH value to 8.5. For both methods, the effects of the pH value, hydrothermal processing time, metal-to-silica ratio and hydrothermal temperature are systematically examined in order to determine the optimal reaction conditions. In general, the metal-silicate materials obtained in both methods have a high specific surface area (550 m2/g) and a large number of well-dispersed metal oxide active sites. The synthesis methods provide a facile approach for preparing metal-silicate materials and recovering the copper content of industrial Cu2+ wastewater. Moreover, the synthesized copper-silicates demonstrate a high performance as adsorbents of toxic gases and catalysts for NOx reduction and removal of H2O2. Similarly, the manganese/cerium-silicate materials show significant potential for the low temperature selective catalytic reduction of NO with NH3.

    目錄 第一章 緒論 1 1.1 中孔洞材料 1 1.1.1 中孔洞材料介紹 1 1.2 矽酸鹽的化學概念 2 1.3 phyllosilicate介紹 4 1.4 結合金屬氧化物之中孔洞氧化矽材料合成 5 1.4.1 結合金屬氧化物複合材料的合成方法 6 1.4.2 管狀copper-silicate孔洞材料之合成方法-氧化矽剝蝕法(27) 7 1.5 實驗動機與其應用範疇之介紹 8 1.5.1 銅離子廢液之回收再利用-Reuse & Recycle 8 1.5.2 降低氮氧化物(NOx)的排放 9 第二章 實驗部分及儀器設備介紹 12 2.1 實驗藥品 12 2.2 實驗步驟及流程示意圖 13 2.2.1以氧化矽剝蝕法製備copper-silicate孔洞材料 13 2.2.2 以共沉澱法製備copper-silicate孔洞材料 13 2.2.3 以氧化矽剝蝕法製備manganese/cerium-silicate孔洞材料 14 2.2.4 以氧化矽剝蝕法製備copper/cerium-silicate孔洞材料 15 2.2.5 以氧化矽剝蝕法製備copper/manganese/cerium-silicate孔洞材料 15 2.2.6 以多重塗佈法反覆移除工業銅離子廢液 15 2.3 儀器鑑定分析 16 2.3.1 穿透式電子顯微鏡(Transmission Electron Microscopy; TEM) 16 2.3.2 掃描式電子顯微鏡(Scanning Electron Microscopy; SEM) 16 2.3.3 熱重分析儀(Thermogravimetry Analysis; TGA) 17 2.3.4 氮氣等溫吸附/脫附測量(N2 adsorption / desorption isotherm) 17 2.3.5 X-射線粉末繞射光譜 (Powder X-Ray Diffraction;PXRD) 21 2.3.6 能量分散光譜儀(Energy Dispersive Spectroscopy;EDS) 22 2.3.7 全反射红外光谱法(Attenuated Total Reflectance;ATR) 23 2.3.8 化學吸附分析儀 23 第三章 以工業銅離子廢液製備copper-silicate孔洞材料 25 3.1工業銅離子廢水以氧化矽剝蝕法製備copper-silicate孔洞材料 25 3.1.1水熱時間對產物的影響 25 3.1.2 改變反應時Cu/SiO2莫耳比例 27 3.1.3 改變反應之水熱溫度 29 3.1.4 改變反應濃度 31 3.2以共沉澱法移除廢液之銅離子並製備copper-silicate孔洞材料 33 3.2.1 改變pH值對產物的影響 33 3.2.2水熱時間對產物的影響 35 3.2.3 反應Cu/SiO2莫耳比例對產物的影響 37 3.2.4 以多重塗佈法移除工業廢液之銅離子 39 3.3比較氧化矽剝蝕法與共沉澱法的差異 40 3.3.1 以甲酸酸洗對產物的影響 41 3.3.2 鍛燒溫度對產物的影響 43 3.3.3 雙氧水降解之應用 44 3.3.4 選擇性觸媒還原法 (Selective catalytic reduction,簡稱SCR) 47 3.3.5 共沉澱法與剝蝕法之鍵結結構總結 48 第四章 製備Metal-silicate孔洞材料 50 4.1以氧化矽剝蝕法製備manganese/cerium-silicate孔洞材料 50 4.1.1 設計實驗方法 50 4.1.2 反應之pH值對產物的影響 51 4.1.3 Mn/Ce莫耳比例&水熱時間對產物的交互影響對產物的影響 53 4.1.4 (Mn+Ce)/SiO2莫耳比例對產物的影響 58 4.1.5 推導反應機構 60 4.1.6 不同鍛燒溫度對產物的影響 62 4.1.7 應用-manganese/cerium-silicate低溫下選擇性催化還原NO 65 4.2 用與實驗方向延伸-Metal-silicate-低溫下選擇性催化還原NO 66 4.2.1 Metal-silicate性質探討 66 4.2.2 Metal-silicate-低溫下選擇性催化還原NO之測試結果 68 4.2.3 NH3-TPD/O2-TPD鑑定結果 69 4.2.4 H2-TPR鑑定結果 71 4.2.5 XPS鑑定結果 71 第五章 總結 73 參考文獻 75

    1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
    2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem.Soc., 1992, 114, 10834-10843.
    3. H. Y. Jin, L. J. Wang and N. C. Bing, Mater Lett, 2011, 65, 233-235.
    4. H. Y. Fan, S. Reed, T. Baer, R. Schunk, G. P. Lopez and C. J. Brinker, Micropor Mesopor Mat, 2001, 44, 625-637.
    5. H. P. Lin and C. Y. Mou, Accounts Chem Res, 2002, 35, 927-935
    6. V. Alfredsson and M. W. Anderson, Chem Mater, 1996, 8, 1141-1146.
    7. C. J. Brinker and G. W. Scherer, J Non-Cryst Solids, 1985, 70, 301-322.
    8. J. Wittke, Meteorite Book:GlossaryP, 2014
    9. E. P. Giannelis, R. Krishnamoorti and E. Manias, Adv Polym Sci, 1999, 138, 107-147
    10. R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Accounts Chem Res, 1998, 31, 485-493.
    11. A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers and E. Parisini, Angewandte Chemie-International Edition in English, 1997, 36, 1001-1003.
    12. R. Murugavel and H. W. Roesky, Angewandte Chemie-International Edition in English, 1997, 36, 477-479.
    13. M. G. Clerici, G. Bellussi and U. Romano, J Catal, 1991, 129, 159-167.
    14. C. B. Dartt, C. B. Khouw, H. X. Li and M. E. Davis, Abstr Pap Am Chem S, 1993, 206, 57-Petr.
    15. J. C. van der Waal, P. J. Kooyman, J. C. Jansen and H. van Bekkum, Micropor Mesopor Mat, 1998, 25, 43-57.
    16. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
    17. A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J Catal, 1994, 148, 569-574.
    18. M. D. Alba, Z. H. Luan and J. Klinowski, J Phys Chem-Us, 1996, 100, 2178-2182.
    19. R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba and J. Klinowski, Catal Lett, 1996, 37, 113-120.
    20. B. L. Newalkar, J. Olanrewaju and S. Komarneni, Chem Mater, 2001, 13, 552-557.
    21. D. R. Rolison, Science, 2003, 299, 1698-1701.
    22. F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor Mesopor Mat, 2008, 113, 562-574.
    23. M. Plabst, L. B. McCusker and T. Bein, J Am Chem Soc, 2009, 131, 18112-18118.
    24. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J Catal, 1989, 115, 301-309.
    25. R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J Phys Chem B, 2002, 106, 13287-13293.
    26. Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics, 2004, 23, 95-103.
    27. 吳宇婷、林弘萍,“以金屬氫氧化物模板法製備metal-silicate孔洞性複合材料之合成與應用”2014
    28. P. W. Schindler, B. Furst, R. Dick and P. U. Wolf, J Colloid Interf Sci, 1976, 55, 469-475.
    29. T. W. Healy, R. O. James and R. Cooper, Advances in Chemistry Series, 1968, 62-&.
    30. R. L. Burwell, R. G. Pearson, G. L. Haller, P. B. Tjok and S. P. Chock, Inorg Chem, 1965, 4, 1123-&.
    31. L. Pauling, Pord. Nat. Acad. Sci. U.S.A, 1930, 16, 578.
    32. M. H. Nilsen, E. Antonakou, A. Bouzga, A. Lappas, K. Mathisen and M. Stocker, Micropor Mesopor Mat, 2007, 105, 189-203.
    33. E. Moretti, L. Storaro, A. Talon, R. Moreno-Tost, E. Rodriguez-Castellon, A. Jimenez-Lopez and M. Lenarda, Catal Lett, 2009, 129, 323-330.
    34. V. Cauda, A. Schlossbauer, J. Kecht, A. Zurner and T. Bein, J Am Chem Soc, 2009, 131, 11361-11370.
    35. M. J. Fuller and M. E. Warwick, J Catal, 1973, 29, 441-450.
    36. F. Sala and F. Trifiro, J Catal, 1974, 34, 68-78.
    37. S. Takenaka, A. Hirata, E. Tanabe, H. Matsune and M. Kishida, J Catal, 2010, 274, 228-238.
    38. P. H. Calderbank, K. Chandrasekharan and C. Fumagalli, Chemical Engineering Science, 1977, 32, 1435-1443.
    39. R. Xu, X. Wang, D. Wang, K. Zhou, and Y. Li, J. Catal., 2006, 237, 426-430.
    40. K. Frey, V. Iablokov, G. Safran, J. Osan, I. Sajo, R. Szukiewicz, S. Chenakin, and N. Kruse, J. Catal., 2012, 287, 30-36.
    41. J. I. Gutierrez-Ortiz, R. Lopez-Fonseca, U. Aurrekoetxea, and J. R. Gonzalez-Velasco, J. Catal., 2003, 218, 148-154.
    42. H. Einaga, Y. Teraoka, and A. Ogata, J. Catal., 2013, 305, 227-237.
    43. B. Dhandapani, and S. T. Oyama, Appl. Catal. B, 1997, 11, 129-166.
    44. L. Singoredjo, R. Korver, F. Kapteijn, and J. Moulijn, Appl. Catal. B, 1992, 1, 297-316.
    45. R. Q. Long, R. T. Yang, and R. Chang, Chem. Commun., 2002, 5, 452-453.
    46. G. S. Qi, R. T. Yang, and R. Chang, Catal. Lett., 2003, 87, 67-71.
    47. Z. Y. Ding, L. Li, D. Wade, and E. F. Gloyna, Ind. Eng. Chem. Res., 1998, 37, 1707-1716.
    48. G. S. Qi, R. T. Yang, and R. Chang, Appl. Catal. B, 2004, 51, 93-106.
    49. F. Kapteijn, L. Singoredjo, A. Andreini, and J. A. Moulijn, Appl. Catal. B, 1994, 3, 173-189.
    50. H. C. Yao, and Y. F. Y. Yao, J. Catal., 1984, 86, 254-365.
    51. G. Ertl, H. Knözinger, F. Schüth, and J. Weitkamp, Handbook Of Heterogeneous Catalysis, 2nd, Wiley-VCH, Weinheim, 2008.
    52. P. Maestre, L. LAMBS, J.-P. Thouvenot and G. Berthon, Free Rad. Res, 1994, 20, 205-218.
    53. E. JEFFREY, Proc. Natl. Acad. Sci. USA, 1999, 96, 3447-3454.
    54. W.-G. Pan, J.-N. Hong, R.-T. Guo, W.-L. Zhen, H.-L. Ding, J. Ind. Eng. Chem., 2014, 20, 2224-2227.
    55. N.-Z. Yang, R.-T. Guo, RSC Advances., 2016, 6, 11226-11232.
    56. H.-L. Bai, and S.-H. Liou, National Chiao Tung University, 2013.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE