| 研究生: |
蔡昀志 Tsai, Yun-Chih |
|---|---|
| 論文名稱: |
以氧化矽剝蝕法與共沉澱法合成 metal-silicate 孔洞材料及應用之研究 Synthesis and Application of Porous Metal-Silicate Materials by Silicate-Exfoliation Method and Co-Precipitation Method |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | metal-silicate材料 、氧化矽剝蝕法 、共沉澱法 |
| 外文關鍵詞: | metal-silicate materials, silicate-exfoliation method, co-precipitation method |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
(1) Copper-silicate孔洞材料
本章節主旨在於,利用兩種簡便的合成手法-氧化矽剝蝕法與共沉澱法,再搭配矽酸鈉的使用下,回收重金屬廢液中的銅離子,進而合成出具有高表面積、高金屬氧化物分散性之copper-silicate孔洞材料,並探討兩者結構上的差異。以往製備孔洞材料的研究中,常利用有機模板和生成物間的作用力,生成與模板具有相似結構之構型的材料,但必須利用酸洗或是高溫鍛燒的方式來移除模板,實驗過程繁複、成本較高且容易產生CO、CO2、NOx或SOx等有害物質。
本研究中的氧化矽剝蝕法則是先製備出氫氧化銅作為金屬模板,再加入矽酸鈉使材料在鹼性環境下進行水熱反應,使矽酸鹽對金屬模板進行剝蝕之後再與其結合,且由於氫氧化銅模板和silicate兩者的晶格大小不匹配,重組後結構具有捲曲力,可形成具有管狀結構的copper-silicate;而共沉澱法的實驗過程與結果更能穩定控制,由金屬前驅物溶液與矽酸鈉混和後,再以鹼源調整使其沉澱,在重金屬廢液回收的環節上,能因應製程放大後的機械設備。在實驗參數的調控方面,藉由改變水熱反應pH值、水熱反應時間、金屬/氧化矽比例、反應濃度等實驗參數,控制實驗路徑及最佳合成條件。最後,兩種合成方法皆具有改善工業廢棄物汙染的潛力,而在應用端上各有發展的面向。
(2) Manganese/Cerium-silicate & Copper/Manganese/Cerium-silicate孔洞材料
本論文將同時以Mn(NO3)2和Ce(NO3)3為金屬離子前驅物,與矽酸鈉以氧化矽剝蝕法為前提合成manganese/cerium-silicate,改變以往使用單一金屬前驅物進行metal-silicate的開發,透過調整水熱反應的pH值、水熱反應時間等各種變因,以觀察材料結構和性質的影響,並藉由調整前驅物劑量和鍛燒溫度,可使催化劑中主成份達到最適當的比例關係。最後嘗試以雙金屬氧化矽、三金屬氧化矽之孔洞材料進行SCR/NO的測試,希望能初步建立探討SCR/NO研究之方針。
Two methods are proposed for the synthesis of copper-silicate materials and manganese/cerium-silicate materials. The first method, referred to as the silicate-exfoliation method, is used to synthesize copper-silicate and manganese/cerium-silicate materials, while the second method, referred to as the co-precipitation method, is used to synthesize copper-silicate materials only. In the silicate-exfoliation method, copper hydroxide platelets are precipitated by adding 2.0 M of NaOH aqueous solution to diluted Cu2+ wastewater and then mixing the resulting gel solution with sodium silicate. Following hydrothermal treatment, the porous metal silicates are filtrated, washed and then dried at 70oC. In the co-precipitation method, copper ions are removed from wastewater directly without hydrothermal treatment by mixing the wastewater with sodium silicate and then adjusting the pH value to 8.5. For both methods, the effects of the pH value, hydrothermal processing time, metal-to-silica ratio and hydrothermal temperature are systematically examined in order to determine the optimal reaction conditions. In general, the metal-silicate materials obtained in both methods have a high specific surface area (550 m2/g) and a large number of well-dispersed metal oxide active sites. The synthesis methods provide a facile approach for preparing metal-silicate materials and recovering the copper content of industrial Cu2+ wastewater. Moreover, the synthesized copper-silicates demonstrate a high performance as adsorbents of toxic gases and catalysts for NOx reduction and removal of H2O2. Similarly, the manganese/cerium-silicate materials show significant potential for the low temperature selective catalytic reduction of NO with NH3.
1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem.Soc., 1992, 114, 10834-10843.
3. H. Y. Jin, L. J. Wang and N. C. Bing, Mater Lett, 2011, 65, 233-235.
4. H. Y. Fan, S. Reed, T. Baer, R. Schunk, G. P. Lopez and C. J. Brinker, Micropor Mesopor Mat, 2001, 44, 625-637.
5. H. P. Lin and C. Y. Mou, Accounts Chem Res, 2002, 35, 927-935
6. V. Alfredsson and M. W. Anderson, Chem Mater, 1996, 8, 1141-1146.
7. C. J. Brinker and G. W. Scherer, J Non-Cryst Solids, 1985, 70, 301-322.
8. J. Wittke, Meteorite Book:GlossaryP, 2014
9. E. P. Giannelis, R. Krishnamoorti and E. Manias, Adv Polym Sci, 1999, 138, 107-147
10. R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Accounts Chem Res, 1998, 31, 485-493.
11. A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers and E. Parisini, Angewandte Chemie-International Edition in English, 1997, 36, 1001-1003.
12. R. Murugavel and H. W. Roesky, Angewandte Chemie-International Edition in English, 1997, 36, 477-479.
13. M. G. Clerici, G. Bellussi and U. Romano, J Catal, 1991, 129, 159-167.
14. C. B. Dartt, C. B. Khouw, H. X. Li and M. E. Davis, Abstr Pap Am Chem S, 1993, 206, 57-Petr.
15. J. C. van der Waal, P. J. Kooyman, J. C. Jansen and H. van Bekkum, Micropor Mesopor Mat, 1998, 25, 43-57.
16. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
17. A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J Catal, 1994, 148, 569-574.
18. M. D. Alba, Z. H. Luan and J. Klinowski, J Phys Chem-Us, 1996, 100, 2178-2182.
19. R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba and J. Klinowski, Catal Lett, 1996, 37, 113-120.
20. B. L. Newalkar, J. Olanrewaju and S. Komarneni, Chem Mater, 2001, 13, 552-557.
21. D. R. Rolison, Science, 2003, 299, 1698-1701.
22. F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor Mesopor Mat, 2008, 113, 562-574.
23. M. Plabst, L. B. McCusker and T. Bein, J Am Chem Soc, 2009, 131, 18112-18118.
24. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J Catal, 1989, 115, 301-309.
25. R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J Phys Chem B, 2002, 106, 13287-13293.
26. Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics, 2004, 23, 95-103.
27. 吳宇婷、林弘萍,“以金屬氫氧化物模板法製備metal-silicate孔洞性複合材料之合成與應用”2014
28. P. W. Schindler, B. Furst, R. Dick and P. U. Wolf, J Colloid Interf Sci, 1976, 55, 469-475.
29. T. W. Healy, R. O. James and R. Cooper, Advances in Chemistry Series, 1968, 62-&.
30. R. L. Burwell, R. G. Pearson, G. L. Haller, P. B. Tjok and S. P. Chock, Inorg Chem, 1965, 4, 1123-&.
31. L. Pauling, Pord. Nat. Acad. Sci. U.S.A, 1930, 16, 578.
32. M. H. Nilsen, E. Antonakou, A. Bouzga, A. Lappas, K. Mathisen and M. Stocker, Micropor Mesopor Mat, 2007, 105, 189-203.
33. E. Moretti, L. Storaro, A. Talon, R. Moreno-Tost, E. Rodriguez-Castellon, A. Jimenez-Lopez and M. Lenarda, Catal Lett, 2009, 129, 323-330.
34. V. Cauda, A. Schlossbauer, J. Kecht, A. Zurner and T. Bein, J Am Chem Soc, 2009, 131, 11361-11370.
35. M. J. Fuller and M. E. Warwick, J Catal, 1973, 29, 441-450.
36. F. Sala and F. Trifiro, J Catal, 1974, 34, 68-78.
37. S. Takenaka, A. Hirata, E. Tanabe, H. Matsune and M. Kishida, J Catal, 2010, 274, 228-238.
38. P. H. Calderbank, K. Chandrasekharan and C. Fumagalli, Chemical Engineering Science, 1977, 32, 1435-1443.
39. R. Xu, X. Wang, D. Wang, K. Zhou, and Y. Li, J. Catal., 2006, 237, 426-430.
40. K. Frey, V. Iablokov, G. Safran, J. Osan, I. Sajo, R. Szukiewicz, S. Chenakin, and N. Kruse, J. Catal., 2012, 287, 30-36.
41. J. I. Gutierrez-Ortiz, R. Lopez-Fonseca, U. Aurrekoetxea, and J. R. Gonzalez-Velasco, J. Catal., 2003, 218, 148-154.
42. H. Einaga, Y. Teraoka, and A. Ogata, J. Catal., 2013, 305, 227-237.
43. B. Dhandapani, and S. T. Oyama, Appl. Catal. B, 1997, 11, 129-166.
44. L. Singoredjo, R. Korver, F. Kapteijn, and J. Moulijn, Appl. Catal. B, 1992, 1, 297-316.
45. R. Q. Long, R. T. Yang, and R. Chang, Chem. Commun., 2002, 5, 452-453.
46. G. S. Qi, R. T. Yang, and R. Chang, Catal. Lett., 2003, 87, 67-71.
47. Z. Y. Ding, L. Li, D. Wade, and E. F. Gloyna, Ind. Eng. Chem. Res., 1998, 37, 1707-1716.
48. G. S. Qi, R. T. Yang, and R. Chang, Appl. Catal. B, 2004, 51, 93-106.
49. F. Kapteijn, L. Singoredjo, A. Andreini, and J. A. Moulijn, Appl. Catal. B, 1994, 3, 173-189.
50. H. C. Yao, and Y. F. Y. Yao, J. Catal., 1984, 86, 254-365.
51. G. Ertl, H. Knözinger, F. Schüth, and J. Weitkamp, Handbook Of Heterogeneous Catalysis, 2nd, Wiley-VCH, Weinheim, 2008.
52. P. Maestre, L. LAMBS, J.-P. Thouvenot and G. Berthon, Free Rad. Res, 1994, 20, 205-218.
53. E. JEFFREY, Proc. Natl. Acad. Sci. USA, 1999, 96, 3447-3454.
54. W.-G. Pan, J.-N. Hong, R.-T. Guo, W.-L. Zhen, H.-L. Ding, J. Ind. Eng. Chem., 2014, 20, 2224-2227.
55. N.-Z. Yang, R.-T. Guo, RSC Advances., 2016, 6, 11226-11232.
56. H.-L. Bai, and S.-H. Liou, National Chiao Tung University, 2013.
校內:立即公開