簡易檢索 / 詳目顯示

研究生: 康鐸耀
Kang, Duo-Yao
論文名稱: 流道內肋條對高溫及相對濕度對低溫質子交換膜燃料電池增益之研究
Study on effect of ribs in flow channel on high-temperature and relative humidity on low-temperature PEM fuel cells
指導教授: 吳鴻文
Wu, Horng-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 94
中文關鍵詞: 高溫質子交換膜燃料電池矩形肋條低溫質子交換膜燃料電池ANOVA分析田口實驗方法阻抗分析
外文關鍵詞: HTPEM fuel cell, Rectangular ribs, LTPEM fuel cell, ANOVA method, Taguchi method, Impedance analysis
相關次數: 點閱:189下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係包含兩部分,第一部分係建立三維單通道高溫型質子交換膜燃料電池數值模型,並於陰陽極流道側邊加裝肋條,透過加裝不同肋條數量1,3,5,7個來探討電池的性能,並得到電池在陰陽極流道側邊加裝5個肋條時會有最佳淨功率。結果顯示在加裝5個肋條情況下,電池輸出淨功率比無加裝肋條高約6.6 %。第二部分則透過實驗田口方法L27對已加裝肋條蛇型流道板實驗,探討在不同燃料進口相對濕度下對低溫型質子交換膜燃料電池的性能影響。L27則使用五種操作參數分別為A因子:電池操作溫度,B因子:陽極入口相對濕度,C因子:陰極入口相對濕度,D因子:陽極化學計量比,E因子:陰極化學計量比,以L27直交表組合進行實驗。由實驗結果可知在操作條件為電壓0.4 V時,操作參數為A2B3C2D2E1時可得到最佳的電池性能,發現A因子對電池性能的影響最大,其次是C,B,E因子;影響最小的因子為D因子。電池溫度增加時可以使電池性能增加,但超過一定溫度後反而使電池性能往下掉,而相對濕度的增加也可使電池性能增加,但過濕時也會導致電池性能的下降。在操作電流15 A及25 A下,除了電池溫度對歐姆阻抗影響較大外,其他控制因子則對歐姆阻抗影響不大。總阻抗隨電池相對濕度及電池溫度增加而降低,但電池溫度過高時容易使膜內水分蒸發而含水減少,導致濕度過低而離子傳輸困難,產生質傳阻抗而使總阻抗值增加。

    This thesis is composed of two parts. The first part is to establish a high temperature proton exchange membrane fuel cell model and to install the rectangular ribs at both sides of anode and cathode channel. The performance of HTPEM (high temperature-proton exchange membrane) fuel cell is investigated by installing different rib numbers of 1,3,5,7 in single straight flow channels. The results show that the maximum output net power occurs at five-rib case, and it is higher than that with no rib about 6.6 %. The second part is to employ Taguchi method and L27 orthogonal array investigating the effect of inlet relative humidity on the performance of LTPEM (low temperature-proton exchange membrane) fuel cell serpentine passages with ribs. The L27 orthogonal array is conducted by selecting five control factors separately including fuel cell temperature (factor A), anode relative humidity (factor B), cathode relative humidity (factor C), stoichiometric flow ratio of hydrogen (factor D) and stoichiometric flow ratio of oxygen (factor E). At operating condition of 0.4 V, the optimal operating combination for LTPEM fuel cell is A2B3C2D2E1. The maximum effect is caused by factor A, followed by C, B, E, and the minimal impact is caused by factor D. When the fuel cell temperature increases, the fuel cell performance is improved. However, as the temperature exceeds a critical temperature, the fuel cell performance starts falling down.
    When the LTPEM fuel cell operates at 15 A and 25 A, it is observed that the fuel cell temperature provides the maximum effect on ohmic resistance. The total impedance varies with fuel cell temperature and relative humidity. When the fuel cell temperature and the relative humidity increase, the total impedance decreases. However, the fuel cell temperature is so high as to reduce water content due to evaporation, leading to suppressed ion transport. As a result, the mass transfer impedance increases to raise the total impedance.

    Abstract I 摘要 III 誌謝 V Table of content VI List of Tables VIII List of Figures IX Nomenclature XII Chapter 1. Introduction 1 1-1. Overview 1 1-2. Introduction of Fuel Cell 2 1-3. Literature review 4 1-4. Motivation and Objectives 7 Chapter 2. Characteristic and numerical description of HTPEM fuel cell 9 2-1. Introduction of HTPEM fuel cell 9 2-2. Characteristic of HTPEM fuel cell 10 2-3. Modeling domain and geometry 13 2-4. Assumptions 14 2-5. Governing equations 15 2-5-1 Mass conservation equation 15 2-5-2 Momentum conservation equation 15 2-5-3 Energy conservation equation 15 2-5-4 Species transport equation 15 2-5-5 Charge equation 16 2-6. Boundary conditions 17 2-7. Numerical method 18 Chapter 3. Experimental system of LTPEM fuel cell 20 3-1. LTPEM fuel cell test system 20 3-2. Electronic loader 20 3-3. Fuel cell 21 3-4. The EIS measurement 21 Chapter 4. Experimental methods of LTPEM fuel cell 22 4-1. Taguchi method 22 4-2.Design of experiments and quality characteristics 22 4-3. Orthogonal array 24 4-4. Confirmation experiment 25 4-5. Principle component analysis (PCA) 26 4-6. Reduction percentage of quality loss (RPQL) 28 4-7. Analysis of electrochemical impendence spectroscop (EIS) 31 4-8. EIS Analysis of LTPEM fuel cell 31 4-9. Heating with humidification and measurement of inlet relative humidity 32 4-10. Experimental procedure 34 4-10-1. Experimental process of Taguchi method 34 4-10-2. Fuel cell activation process 34 Chapter 5. Results and discussion 36 5-1. HTPEM fuel cell model validation for no rectangular ribs 36 5-2. Effects of rib numbers on fuel cell performance and pressure drop 36 5-3. Temperature, velocity vectors and oxygen distributions with no rib and N=5 37 5-4. Experimental analysis of LTPEM fuel cell 38 5-4-1. Discussion of interaction 39 5-4-2. Analysis of LTPEM fuel cell at different operating conditions 40 5-4-3. LTPEM fuel cell ANOVA analysis and optimal combinations 41 5-4-4. LTPEM fuel cell impedance analysis 42 5-4-5. Optimum condition obtained with PCA method 43 5-4-6. Comparison of LTPEM fuel cell optimum results between single and multiple objectives 43 Chapter 6. Conclusions and future works 46 6-1.Conclusions 46 6-2. Future works 47 References 48

    [1]L.J. Fang,“The book of 2010energy technique industry”, Bureau of economic, 2010.
    [2]F.C. Lee, “New energy”, Hsin Wen Ging published corporation, 2009.
    [3]J.J. Huang, “Fuel cell”, Chun Hua books, 2007.
    [4]A. Dicks , J. Larminie, “Fuel Cell Systems Explained”, John Wiley Inc, New York, pp.1-418, 2000.
    [5]A.B Sadiq, A.R Maher, “PEM fuel cells: fundamentals, modeling, and applications. Washington: Create Space Independent Publishing Platform”, 2013.
    [6]J.B. Wang , J.H. Fang, K Jiao , Q Du , X.L. Yang ,Y. Yin, “Modeling of high temperature proton exchange membrane fuel cells with novel sulfonated polybenzimidazole membranes”, Int. J. Hydrogen Energy, Vol. 39, pp. 13671-13680, 2014.
    [7]D. Ubeda, F.J Pinar, J. Lobato, M.A Rodrigo, P. Canizares. “Study of flow channel geometry using current distribution measurement in a high temperature polymer electrolyte membrane fuel cell”, J .Power Sources, Vol. 196, pp.4209-4217, 2011.
    [8]N. Zuliani, R. Taccani, “Microcogeneration system based on HTPEM fuel cell fueled with natural gas: Performance analysis”, App Energy; Vol. 97, pp. 802-808, 2012
    [9]V. Ionescu, “High temperature PEM fuel cell steady-state transport modeling”, Ovidius University Annals Chem , Vol. 24, pp.55-60, 2013.
    [10]H. Ju, P. Chippar. “Numerical modeling and investigation of gas crossover effects in high temperature proton exchange membrane (PEM) fuel cells”, Int. J. Hydrogen Energy, Vol. 38, pp. 7704-7714, 2013.
    [11]E.U. Ubong, Z. Shi, X. Wang, “Three-Dimensional Modeling and experimental Study of a High Temperature PBI-Based PEM Fuel Cell”, J. Electrochem. Soc, Vol. 56, pp. 1276-1282, 2009.
    [12]Jianhua Fang, Jiabin Wang, Kui Jiao, Qing Du, Xiaole Yang, Yan Yin, “Modeling of high temperature proton exchange membrane fuel cells with novel sulfonated polybenzimidazole membranes”, International Journal of Hydrogen Energy, Vol. 39, pp. 13671-13680, 2014.
    [13]Chaojie Song, Jianlu Zhang, Jiujun Zhang, Yanghua Tang, “Polybenzimidazole-membrane-based PEM FUEL CELL in the temperature range of 120-200℃”, Journal of Power Sources, Vol. 172, pp. 163-171, 2007.
    [14]Antonio Reis, K.J. Berry, Susanta K. Das , “Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell”, Journal of Power Sources, Vol. 193, pp. 691-698, 2009.
    [15]H.W. Gu , H.W. Wu , “Effects of modified flow field on optimal parameters estimation and cell performance of a proton exchange membrane fuel cell with the Taguchi method”, Int. J. Hydrogen Energy, Vol.37, pp. 1613-1627, 2012.
    [16]H.W. Wu, S.W. Perng, “A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEM FUEL CELL”, Appl. Energy, Vol 14, pp. 381-95, 2015.
    [17]G. Tsotridis, M. Bilgili, M. Bosomoiu, “Gas flow field with obstacles for PEM fuel cells at different operating conditions ”, Int. J. Hydrogen Energy , Vol. 40, pp. 2303-2011, 2015.
    [18]Huan-Jung Lin, Koan-Yuh Chang, Pang-Chia Chen, “The optimal performance estimation for an unknown PEM FUEL CELL based on the Taguchi method and a generic numerical PEM FUEL CELL model ”, J. Hydrogen Energy, Vol.34, pp.1900-1998, 2009.
    [19]Sheau-Wen Shah, Sheng-Ju Wu, Wei-Lung Yu, “Parametric analysis of the proton exchange membrane fuel cell performance using design of experiments”, Int. J. Hydrogen Energy, Vol. 33, pp. 2311-2322, 2008.
    [20]Sheau-Wen Shah, Sheng-Ju Wu, Wei-Lung Yu, “ Experimental analysis of dynamic characteristics on the PEM fuel cell stack by using Taguchi approach with neural networks”, Int. J. Hydrogen Energy, Vol. 35, pp. 11138–11147,2011.
    [21]L. Akyalçın, S. Kaytakoğlu, “Optimization of parametric performance of a PEM FUEL CELL”, Int. J. Hydrogen Energy, Vol.32, pp. 4418–4423, 2007.
    [22]Alex Hakenjos, Carsten Agert, Jerome Karamer, Mario Zedda, Timo Kurz, “An impedance-based predictine control strategy for the state-of-health of PEM fuel cell stacks”, J. Power Sources, Vol.180, pp.742-747, 2008.
    [23]David P. Wilkinson, Haijiang Wang, Jian Colin Sun, Jiujun Zhang, Mauricio Blanco, Xiaozi Yuan , “AC impedance diagnosis of a500W PEM fuel cell stack Part I : Stack impedance”, J. Power Sources, Vol.161, pp. 920-928, 2006.
    [24]G. Günther, N. Felix. Büchi, Scherer, “In-situ resistance measurements of Nafion® 117 membranes in polymer electrolyte fuel cells”, Journal of Electroanalytical Chemistry, Vol.404, pp. 37-43, 1996.
    [25]H. R. Kunz, H. Xu, J. M. Fenton, “ Analysis of proton exchange membrane fuel cell polarization losses at elevated temperature 120 °C and reduced relative humidity”, Electrochim Acta, Vol. 52, pp. 3525–3533, 2007.
    [26]C. Song, H. Li , H. Wang , J. Zhang, Y. Tang, Z. Xia, “PEM fuel cell relative humidity (RH) and its effect on performance at high temperature”, Electrochim Acta, Vol. 53, pp. 5315–5321, 2008.
    [27]C.H. Lee, H.I. Lee, I.W. Park, K.K.Baek, T.Y. Oh, S.G. Choi, “Development of 1 kW class polymer electrolyte membrane fuel cell power generation system”, J. Power Sources, Vol.107, pp. 110-119, 2002.
    [28]B. Sompalli, F.T. Wagner, H.A. Gasteiger, S.S. Kocha,“Activity benchmarks and requirements for Pt, Pt-alloy, and non Pt oxygen reduction catalysts for PEM FUEL CELLs”, Applied Catalysis B: Environmental, Vol. 56, pp. 9-35, 2005.
    [29]C. He, G. Brown, S. Bollepalli, S. Desai, “PEM Fuel Cell Catalysts: Cost, Performance, and Durability”, The Electrochemical Society Interface, Vol. 14, pp.41-45, 2005.
    [30]C. J. Song, D.P. Wilkinson, D.T. Song, H.J. Wang, J.J. Zhang, J.L. Zhang, S. Holdcroft, T. Navessin, Y.H. Tanga, Z.Q. Shi, Z.S. Liu, Z. Xie, “ High temperature PEM fuel cells”, Journal of Power Sources, Vol. 160, pp. 872-891, 2006.
    [31]A.K. Santra, D.W. Goodman, “Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures”, Electrochimica Acta, Vol. 47, pp. 3595-3609, 2002.
    [32]J.A. Gao, J.O. Jensen, N.J. Bjerrum, Q.F. Li, R.H. He, “The CO poisoning effect in PEM FUEL CELLs operational at temperatures up to 200 degrees C”, Journal of the Electrochemical Society, Vol.150, pp.1599-1605, 2003.
    [33]A. Wieckowski, C. Lu, C. Rice, G.Q. Lu, P. Waszczuk, R.I. Masel, “UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces and reference to fuel cell catalysis”, Electrochimica Acta, Vol. 47, pp. 3637-3652, 2002.
    [34]D.P. Wilkinson, H.J. Wang, J.J. Zhang, L. Zhang, “Progress in preparation of nonnoble electrocatalysts for PEM fuel cell reactions”, Journal of Power Sources, Vol. 156, pp. 171-182, 2006.
    [35]J.S. Yi, T.V. Nguyen, “An along‐the‐channel model for proton exchange membrane fuel cells”, Journal of the Electrochemical Society, Vol. 145, pp.1149-1159, 1998.
    [36]N.J. Bjerrum, J.O. Jensen, Q.F. Li, R.H. He, “Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100℃”, Chemistry of Materials, Vol. 15, pp. 4896-4915, 2003.
    [37]C.J.Gittleman, C.K. Mittelsteadt, D.P. Miller, H.A. Gasteiger, J.J. Conley, M.F. Mathias, P.T. Yu, R. Makharia, S.G. Yan, S.S. Kocha, T.J. Fuller, T. Xie, “Two Fuel Cell Cars In Every Garage, The Electrochemical Society Interface”, Vol. 14, pp. 24-35, 2005.
    [38]A.Z. Weber, J. Newman, “Coupled Thermal and Water Management in Polymer Electrolyte Fuel Cells”, Journal of the Electrochemical Society, Vol. 153, pp.2205-2214, 2006.
    [39]Barbir Frano, “PEM Fuel Cells: Theory and Practice”, Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo, Vol.1-3, 2005.
    [40]D. Cheddie, N. Munroe, “Mathematical model of a PEM FUEL CELL using a PBI membrane”, Energy Conversion and Management, Vol.47, pp.1490-1504, 2006.
    [41]B. Tang, M. Pan, W. Yuan, Y. Tang, Z. Li, “Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance”, Renewable Energy, Vol. 35 , pp. 656-666, 2010.
    [42]M. Duclot, J.L. Souquet, R. Bouchet, S. Miller, “A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole”, Solid State Ionics, Vol. 145, pp. 69-78, 2001.
    [43]F. D. Raithby , J. P. Van Doormaal , “Enhancements of the SIMPLE method for tredicting incompressible fluid flows”, Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.
    [44]Gyung Jin Park, “Analytic methods for design practice”, 2007.
    [45]K. Pearson, “On lines and planes of closest fit to systems of points in spaces, Philos”. Mag. Series 62, pp. 559–572, 1901.
    [46]H. Hotelling, “Analysis of a complex of statistical variables into principal components”, J. Educ. Psychol. 24, pp. 417–441, 1933.
    [47]M. S. Phadke, Quality engineering using robust design, Prentice-Hall, Englewood Cliffs, NJ, 1989.
    [48]G. Taguchi, Y. Yokoyama, Y. Wu, Taguchi Methods: Design of experiments, ASI Press, Chicago, 1993.
    [49]P. J. Ross, Taguchi techniques for quality engineering, McGraw-Hill, New York, 1988.
    [50]G. Taguchi, Quality engineering in production systems, McGraw-Hill, New York, 1989.
    [51]A. Dicks, J. Larminie, “Fuel Cell Systems Explaind” 2nd ed., John Wiley&Sons Ltd, 2003.
    [52]Y.W.Su, “Performance Test and Electrochemical Impendance Spectroscopy/Cyclic Voltammetry for a μPEM Fuel Cell,” Master thesis, National Sun Yat-sen University, 2012
    [53]C.W. Extrand, J.W. Van Zee, M. Venkatraman, S. Shimpalee, Sung In Moon, “Estimates of pressure gradients in PEM FUEL CELL gas channels due to blockage by static liquid drops, ” Int. J. Hydrogen Energy, Vol.34 , pp.5522–5528,2009.

    下載圖示 校內:2021-09-07公開
    校外:2021-09-07公開
    QR CODE