簡易檢索 / 詳目顯示

研究生: 阮明進
Nguyen, Minh-Tien
論文名稱: 利用分子動力學模擬Fe4N之磁、熱及機械特性
Molecular Dynamics Simulation of Magnetic, Thermodynamic and Mechanical Properties of Fe4N
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 63
外文關鍵詞: Iron Nitride, Density of State, Molecular Dynamic, Magnetic Moment, Mechainical, Thermodynamic, CASTEP Code
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The present study is aimed at numerical simulation of the properties of iron nitride by mean of ab initio method. In the numerical computation, the crystal structure of the ’-Fe4N is built in form of an unit cell with a face-center cubic (FCC) Fe atoms structure containing one nitrogen atom placed at the crystal center. The experimental lattice constant, 3.790Å, has been used in this calculation, which is obtained from the on ab initio electronic structure methods derived from spin polarized density function theory (DFT). Meanwhile, results show that when the lattice parameter is increased, the magnetic moment of Fe-II is increased, while the magnetic moment of Fe-I is nearly unchanged. In addition, mechanical properties such as elastic constant and bulk modulus as well as thermal properties of iron nitride are also predicted. In this study, the chemical bond between Fe atoms and N atoms can be observed based on the predicted distribution of electron density.

    ABSTRACT i ACKNOWLEDGEMENT ii CONTENTS iii LIST OF FIGURES vi NOMENCLATURE vii CHAPTER I 1 INTRODUCTION 1 1.1 Literature survey 1 1.2 Iron nitride compound overview 3 1.3 Thesis outline 4 CHAPTER II 6 BASIC THEORIES 6 2.1 Density Function Theory 6 2.1.1 Hohenberg – Kohn Theory 7 2.1.2 Kohn – Sham Equation 8 2.1.3 Local Density Approximation 11 2.1.4 Generalized Gradient Approximation 12 2.2 Plane Wave As a Basic Set 13 2.3 The Pseudo-Potential Approximation 15 2.4 The CASTEP Code 16 CHAPTER III 17 COMPUTATIONAL METHODS 17 3.1 Magnetic and Electronic Structural Properties 18 3.1.1 Density of State 18 3.1.2 Magnetism in Density Functional Theory 20 3.2 Mechanical Properties 22 3.3 Thermodynamic Properties 25 3.3.1 Phonon Density Of State 26 3.3.2 Phonon Dispersion 27 3.3.3 Temperature-Dependent Thermodynamic Properties 28 CHAPTER IV 29 RESULTS AND DISCUSSION 29 4.1 Magnetic and Electronic Structural Properties 29 4.2 Mechanical Properties 32 4.3 Thermodynamics Properties 34 CHAPTER V 36 CONCLUDING REMARKS 36 REFERENCES 38 TABLES 44 FIGURES 48

    [1] Danielkleppner, R. W.Field, N. F.Lane, F. M.Pipkin, and I. A.Sellin, Physics Through the 1990s: Atomic, Molecular, and Optical Physics Washington, D.C: National Academies Press, 1986.
    [2] Hongzhi.Yao, "Ab Initio Calculation Of Elastic Constants Of Oxide and Nitride Crystals," Master of Science, Department of Physis University of Missouri- Kansas, Kansas city, 2005.
    [3] J. Bernholc, "Computational Materials Science: The Era of Applied Quantum Mechanics," Phys. Today, vol. 52(9), pp. 30-37, 1999.
    [4] P.Hohenberg and W.Kohn, "Inhomogeneous Electron Gas," Physical Review, vol. 136, pp. B864-B871, 1964.
    [5] W.Kohn and L.J.Sham, "Self-Consistent Equations Including Exchange and Correlation Effects," Physical Review, vol. 140, pp. A1133-A1138, 1965.
    [6] D. Borsa, "Nitride−based insulating and magnetic thin films and multilayers," the Solid State Physics Laboratory, The University of Groningen, the Netherlands, 2004.
    [7] E. H. d. M. v. Voorthuysen, N. G. Chechenin, and D. O. Boerma, "Low-temperature extension of the lehrer diagram and the iron-nitrogen phase diagram," Metallurgical and Materials Transactions A, vol. 33, pp. 2593-2598, 2002.
    [8] Y. J. Shi, Y. L. Du, and G. Chen, "Ab initio study of structural and magnetic properties of cubic Fe4N(0 0 1) surface," Solid State Communications, vol. 152, pp. 1581-1584, 2012.
    [9] T. Takahashi, J. Burghaus, D. Music, R. Dronskowski, and J. M. Schneider, "Elastic properties of gamma-Fe4N probed by nanoindentation and ab initio calculation," Acta Materialia, vol. 60, pp. 2054-2060, 2012.
    [10] V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated Electronic Properties of Metals. New York: Metals Pergamon Press, 1978.
    [11] http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1998/.
    [12] C. Fiolhais, F. Nogueira, and M. A. L. Marques, A Primer in Density Functional Theory. Germany: Springer, 2003.
    [13] R. M.Martin, "Electronic Structure:Basic Theory and Practical Methods," ed. Cambridge Cambridge University Press, 2004.
    [14] U. v. Barth and L.Hedin, "A local exchange-correlation potential for the spin polarized case: I," J. Phys. C: Solid State Phys., vol. 5, pp. 1629-1642, 1972.
    [15] D.M.Ceperley and B.J.Alder, "Ground State of the Electron Gas by a Stochastic Method," Physical Review Letters, vol. 45, pp. 566-569, 1980.
    [16] J.P.Perdew and A. Zunger, "Self-interaction correction to density-functional approximations for many-electron systems," Physical Review B, vol. 23, pp. 5048-5079, 1981.
    [17] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Physical Review Letters, vol. 77, pp. 3865-3868, 1996.
    [18] J. P. Perdew, K. Burke, and Y. Wang, "Generalized gradient approximation for the exchange-correlation hole of a many-electron system," Physical Review B, vol. 54, pp. 16533-16539, 1996.
    [19] J. P.Perdew and W. Yue, "Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation," Physical Review B, vol. 33, pp. 8800-8802, 1986.
    [20] H. J. Monkhorst and J. D.Pack, "Special points for Brillouin-zone integrations," Physical Review B, vol. 13, pp. 5188-5192, 1976.
    [21] J. C.Phillips, "Energy-Band Interpolation Scheme Based on a Pseudopotential," Physical Review, vol. 112, pp. 685-695, 1958.
    [22] J. C.Phillips and L. Kleinman, "New Method for Calculating Wave Functions in Crystals and Molecules," Physical Review, vol. 116, pp. 287-294, 1959.
    [23] L. Kleinma and D. M. Bylander, "Efficacious Form for Model Pseudopotentials," Physical Review Letters, vol. 48, pp. 1425-1428, 1982.
    [24] D. Vanderbilt, "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism," Physical Review B, vol. 41, pp. 7892-7895, 1990.
    [25] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, et al., "First principles methods using CASTEP," Zeitschrift für Kristallographie - Crystalline Materials, vol. 220, pp. 567-570, 2005.
    [26] M. D. Segall, P. J. D. Lindan, M. J.Probert, C. J. Pickard, P. Hasnip, S. J. Clark, et al., "First-principles simulation: ideas, illustrations and the CASTEP code," Journal of Physics-Condensed Matter, vol. 14, pp. 2717-2744, 2002.
    [27] P. Mohn* and S. F. Matar, "The gamma-Fe4N system revisited: an ab initio calculation study of the magnetic interactions," Journal of Magnetism and Magnetic Materials, vol. 191, pp. 234-240, 1998.
    [28] H. Li, L. Zhang, Q. Zeng, H. Ren, K. Guan, Q. Liu, et al., "First-principles study of the structural, vibrational, phonon and thermodynamic properties of transition metal carbides TMC (TM = Ti, Zr and Hf)," Solid State Communications, vol. 151, pp. 61-66, 2011.
    [29] H. R. Soni, V. Mankad, S. K. Gupta, and P. K. Jha, "A first principles calculations of structural, electronic, magnetic and dynamical properties of mononitrides FeN and CoN," Journal of Alloys and Compounds, vol. 522, pp. 106-113, 2012.
    [30] G. J. Ackland, "Embrittlement and the Bistable Crystal Structure of Zirconium Hydride," Physical Review Letters, vol. 80, pp. 2233-2236, 1998.
    [31] H. Kronmüller and S. Parkin, Handbook of magnetism and advanced magnetic materials vol. 1. Published Online: Wiley-Interscience, 2007.
    [32] A. Postnikov, "Simulations of magnetic systems : ferro / antiferromagnetic ordering and other issues," Santander2010.
    [33] R.S.Mulliken, "Electronic Population Analysis on LCAO[Single Bond]MO Molecular Wave Functions. I," The Journal of Chemical Physics, vol. 23, pp. 1833-1840, 1955.
    [34] W. D. Callister and D. G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach, 4th ed. Taiwan, R.O.C: Wiley, 2012.
    [35] T.Gressmann, M.Wohlschlögel, S.Shang, U.Welzel, A.Leineweber, E.J.Mittemeijer, et al., "Elastic anisotropy of '-Fe4N and elastic grain interaction in γ'-Fe4N1−y layers on α-Fe:First-principles calculations and diffraction stress measurements.," Acta Materialia, vol. 55, pp. 5833-5843, 2007.
    [36] F. Konga, Y. Liu, B. Wanga, Y. Wangc, Y. Hud, L. Wange, et al., "Electronic structure, elastic and thermodynamic properties of α-phase Na3N under pressure from first principles," Physica B: Condensed Matter, vol. 407, pp. 2272-2277, 2012.
    [37] V. Milman and M. C. Warren, "Elastic properties of TiB2 and MgB2," Journal of Physics-Condensed Matter, vol. 13, pp. 5585-5595, 2001.
    [38] M. J. Mehl, B. M. Klein, and D. A. Papaconstantopoulos, "First principles calculations of elastic properties of metals," Intermetallic compounds: principles and practice, vol. 1, pp. 195-210, 1995.
    [39] B. Fultz, "Vibrational Thermodynamics of Materials," Progress in Materials Science, vol. 55, pp. 247-352, 2010.
    [40] S.Baroni, S. d. Gironcoli, A. D. Corso, and P.Giannozzi, "Phonons and related crystal properties from density-functional perturbation theory," Reviews of Modern Physics, vol. 73, pp. 515-562, 2001.
    [41] J. Yang, H. Sun, and C. Cheng, "Anomalous strength anisotropy of '-Fe4N identified by first-principles calculations," Applied Physics Letters, vol. 94, pp. 151914-151917, 2009.
    [42] E. L. P. y. Blancá, J. Desimoni, N. E. Christensen, H. Emmerich, and S. Cottenier, "The magnetization of '-Fe4N: theory vs. experiment," physica status solidi (b), vol. 246, pp. 909-928, 2009.
    [43] W.H.Zhang, Z.Q.Lv, Z.P.Shi, S.H.Sun, Z.H.Wang, and W.T.Fu, "Electronic, magnetic and elastic properties of ε-phases Fe3X(X=B, C, N) from density-functional theory calculations," Journal of Magnetism and Magnetic Materials, vol. 324, pp. 2271-2276, 2012.
    [44] A. V. G. Rebaza, J.Desimoni, and E. L. P. y. Blancá, "Study of the magnetic and electronic properties of the Fe4N with pressure," Physica B: Condensed Matter, vol. 404, pp. 2872-2875, 2009.
    [45] S.Matar, P.Mohn, G.Demazeau, and B.Siberchicot, "The calculated electronic and magnetic structures of Fe4N and Mn4N," Journal de Physique, vol. 49, pp. 1761-1768, 1988.
    [46] X.G.Ma, J.J.Jiang, P. Liang, J. Wang, Q.Ma, and Q. K. Zhang, "Structural stability and magnetism of '-Fe4N and CoFe3N compounds," Journal of Alloys and Compounds, vol. 480, pp. 475-480, 2009.
    [47] M.D.Segal, R.Shah, C. J. Pickard, and M. C. Payne, "Population analysis of plane-wave electronic structure calculations of bulk materials," Physical Review B (Condensed Matter), vol. Volume 54, pp. 16317-16320, 1996.
    [48] Q. Zhang, J. Liu, and G. Wei, "Monte Carlo simulation of the Ising ferromagnetic iron nitride system," physica status solidi (b), vol. 242, pp. 1093-1099, 2005.
    [49] Y.R.Jang, I.G.Kim, and J.I.Lee, "Electronic structure and magnetic properties of Fe4N(001)," Journal of Magnetism and Magnetic Materials, vol. 263, pp. 366-372, 2003.
    [50] K.-J. Kim, K. Sumiyama, K. Shibata, and K. Suzuki, "Martensitic transformation of mechanically ground y'-Fe4 N," Materials Science and Engineering, vol. A181/A182, pp. 1272-1276, 1994.
    [51] Y. Takahashi, Y. Imai, and T. Kumagai, "Spin-polarized electronic band structures of the Fe4N–Co4N system," Journal of Magnetism and Magnetic Materials, vol. 323, pp. 2941-2944, 2011.
    [52] J.L.Costa-Krämer, D.M.Borsa, J.M.García-Martín, M.S.Martín-González, D.O.Boerma, and F.Briones, "Structure and magnetism of single-phase epitaxial γ′-Fe4N," Physical Review B, vol. 69, 2004.
    [53] W.F.Gale and T.C.Totemeier, Smithells Metals Reference Book. USA: Oxford: Elsevier, 2004.
    [54] A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, "Single-Crystal Elastic Constants of Fe-15Ni-15Cr Alloy," Metallurgical and Materials Transactions A, vol. 35, pp. 3149-3154, 2004.
    [55] A.Leyland and A.Matthews, "On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour," Wear, vol. 246, pp. 1-11, 2000.
    [56] N. Rathod, S.D.Gupta, S. K. Gupta, and P. K.Jha, "First-Principles Study of Structural, Electronic, Elastic, Phonon, and Thermodynamical Properties of the Niobium Carbide," Solid State Phenomena, vol. 171, pp. 67-77, 2011.
    [57] B.Frazer, "Magnetic Structure of Fe4N," Physical Review, vol. 112, pp. 751-754, 1958.
    [58] C.A.Kuhnen, R. S. d. Figueiredo, V.Drago, and E. Z. d. Silva, "Mössbauer studies and electronic structure of γ′-Fe4N," Journal of Magnetism and Magnetic Materials, vol. 111, pp. 95-104, 1992.
    [59] R.Coehoorn, G. H. O. Daalderop, and H. J. F. Jansen, "Full-potential calculations of the magnetization of Fe16N2 and Fe4N," Physical Review B, vol. 48, pp. 3830-3834, 1993.

    下載圖示 校內:2014-07-03公開
    校外:2014-07-03公開
    QR CODE