簡易檢索 / 詳目顯示

研究生: 林俊佑
Lin, Chin-Yu
論文名稱: 混合再生能源於獨立區域之系統分析與設計
System Analysis and Design using Multiple Renewable Energy System for Isolated Areas
指導教授: 林清一
Lin, Chin E.
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 91
中文關鍵詞: 可再生能源微電網系統HOMER模擬最佳化設計
外文關鍵詞: Renewable Power System, Micro-Grid System, HOMER Simulation, Optimal Design
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 離網電力系統已經成為一種越來越普及化的電力供應系統,且特別適用於鄉村或偏遠地區。此電力系統最大的特性乃是提供具有可靠性、可持續性用電,並同時兼顧環境保護的目的。混合再生能源模型可以包含多種的零組件,並從不同的發電方式獲取能量,因此,此電力系統擁有許多設計的組合比例。除了以往僅使用傳統柴油發電機的發電設計,藉由加入不同再生能源的發電方式,例如加入風能、太陽能和儲能系統等,可以用來產出額外的電能,不但可以提升整個電力系統的可靠性,也可以減少燃料消耗,降低發電的成本,同時也降低了溫室氣體的排放。在這項研究中,主要採用太陽能板、柴油發電機、風力發電機、電池和電能轉換器,用來設計於一個在菲律賓小島BASCO的電力系統中。此項研究使用HOMER軟體模擬出不同電力系統設計的方案,並找出最佳化的組合和結果。風能和太陽能的發電被分析出是主要提供負載需求或為電池充電的能量來源。當設計這套電力系統的模組時,須根據電力負載量、氣候數據、發電零件的成本等其他參數而設計,達到降低淨現值成本(NPC)的目的,另一方面也許要顧慮到設備的取得性和適用性。結果模擬出幾個不同最佳化後的設計方案,以滿足研究區域的微電網系統的要求。

    The off-grid hybrid power system has been more and more popular for the supply of electric power to some rural and remote areas. The power system requires reliability, sustainability and environmental friendly features though it is far from the grid. Hybrid renewable model could include several components and exploits energy from different resources. It might be combinations of hybrid power system design. Based on the renewable sources like wind and solar and combining with the conventional diesel generator and battery storage system could not only provide the additional energy source to improve system reliability, but also decrease fuel consumption to reduce energy cost and lower the greenhouse gas emission. In this study, solar panels, diesel generators, wind turbines, battery bank and converters are proposed to design hybrid power system in BASCO, Philippines. In this study, HOMER is adopted to design for the hybrid power system and simulate different scenarios for optimal system installation. Wind and solar energies are considered as the main sources to supply the loading demand or to charge the battery bank as the excess electric power being generated. When designing the models of this power system, the simulations and optimizations are carried based on loading demand, climatic data, price and efficiency of the power components and other parameters for which the net present cost (NPC) has to be minimized on feasibility and availability. The results have obtained that several optimal design options being adoptable to meet the micro-grid system requirements in the studied area.

    摘要 I ABSTRACT II 誌謝 III List of Figures VII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background Information 2 1.3 Scope of Research 5 1.4 Literature survey 6 1.5 Main idea 6 Chapter 2 Technologies 8 2.1 Wind turbine 8 2.1.1 Basic Mechanisms of Wind Turbine 9 2.1.2 Energy and power in the wind 13 2.2 Solar Photovoltaic Systems 18 2.2.1 Types of Photovoltaic Cells 19 2.2.2 Installation Methods of PV modules 20 2.2.3 Mathematical model of PV generation 23 2.3 Diesel-fuel Generator 23 2.4 Converters 26 2.5 Energy Storage system 28 2.5.1 Selection Criteria of Energy Storages System 28 2.5.2 Battery Bank 32 Chapter 3 Configuration Hybrid Power System 34 3.1 Classification of Hybrid Power System Configuration 35 3.2 AC-Coupled Hybrid Power Systems 35 3.3 DC-Coupled Hybrid Power Systems 37 3.4 AC/DC-Coupled Hybrid Power Systems 39 3.5 Overview of HOMER Software 41 Chapter 4 Simulation Inputs of Hybrid Power System 44 4.1 Loading Demand Input 45 4.2 Solar Energy Resource Input 48 4.4 Cost Data and Specifications of Each Component Input 50 4.4.1 Input of PV Panel Specification & Cost 51 4.4.2 Input of Wind Turbine Specification & Cost 52 4.4.3 Input of Battery bank Specification & Cost 53 4.4.4 Input of Diesel Generator Specification & Cost 54 4.4.5 Input of Converter Specification & Cost 55 4.5 Economic Inputs 56 4.6 Constraint Inputs 57 4.7 Emission and System Control Parameters Input 57 4.8 The Input Size of Each Component in the Search Space 58 4.9 Sensitivity Variables Input 59 Chapter 5 Results and Analyses 61 5.1 Systems Optimization and Different Scenarios 61 5.2 Comparison of Each Scenario 62 5.3 Sensitive Analysis 79 Chapter 6 Conclusion and Prospect 86 6.1 Conclusion 86 6.2 Prospect 87 References 88

    [1] Y. Tan, L. Meegahapola, and K. M. Muttaqi, “A review of technical challenges in planning and operation of remote area power supply systems”, Renewable and Sustainable Energy Reviews, 2014. 38: p. 876-889.
    [2] Diesel Plant in Philippines operation data, Available in May 2016 from website:
    http://www.napocor.gov.ph/index.php/2013-09-13-01-23-51/spug-rates/15-erc-rates
    [3] International Maps, Available in May 2016 from website:
    http://www.nrel.gov/gis/international.html
    [4] Solar Potential, Available in May 2016 from website:
    http://www.sacasol.com/solarpotential.html
    [5] G. Bekele, G. Boneya. "Design of a photovoltaic-wind hybrid power generation system for Ethiopian remote area", Energy Procedia 14 (2012): 1760-1765.
    [6] G. Bekele, B. Palm, Björn, “Feasibility study for a standalone solar–wind-based hybrid energy system for application in Ethiopia”, Applied Energy, 2010, 87.2: 487-495.
    [7] M. A. Elhadidy, S. M. Shaahid. "Decentralized/stand-alone hybrid wind–diesel power systems to meet residential loads of hot coastal regions", Energy Conversion and Management 46.15 (2005): 2501-2513.
    [8] Teacher Geek. Types of Wind Turbines, Available in May 2016 from website: http://www.teachergeek.org/wind_turbine_types.pdf
    [9] WINDPOWER. 14. Wind turbine power output variation with steady wind speed. Available in May 2016 from website: http://www.wind-power-program.com/turbine_characteristics.htm
    [10] S. Mathew. Wind energy: fundamentals, resource analysis and economics (Vol. 1) (2006). Heidelberg: Springer.
    [11] S. Diaf, D. Diaf, M. Belhamel, M. Haddadi, A. Louche, “A methodology for optimal sizing of autonomous hybrid PV/wind system”, 2007. Energy Policy, 35(11), 5708-5718.
    [12] M. R. Patel, “Wind and solar power systems: design, analysis, and operation”, 2005. CRC press.
    [13] HOMER, the Micro-Power Optimization Model; ver.2.68Beta, NREL, 2009.
    [14] A. Goodrich, T. James, M. Woodhouse, “Residential, commercial, and utility scale photovoltaic (PV) system prices in the United States: current drivers and cost-reduction opportunities”, Contract, 303(2012), 275-3000..
    [15] EVERLIGHT. Solar Power system, Available in May 2016 from website: http://everlight-solar.com/en/home3.html
    [16] Solar Closet. Difference between monocrystalline polycrystalline and Amorphous thin film solar cell, Available in May 2016 from website:
    http://www.solarcloset.com/understanding-solar-equipment/difference-between-monocrystalline-polycrystalline-and-amorphous-thin-film-solar-cell/
    [17] TEACH ASTRONOMY. Counting and Measurement Available in June 2016 from website: http://www.teachastronomy.com/astropedia/article/Counting-and-Measurement
    [18] A. Kaabeche, M. Belhamel, R. Ibtiouen, “Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system”, Energy, (2011) 36(2), 1214-1222.
    [19] S. Diaf, D. Diaf, M. Belhamel, M. Haddadi, A. Louche, “A methodology for optimal sizing of autonomous hybrid PV/wind system. Energy Policy”, (2007) 35(11), 5708-5718.
    [20] T. Ackermann, L. Söder, “Wind energy technology and current status: a review”, Renewable and sustainable energy reviews”, (2000) 4(4), 315-374.
    [21] A. Hasanzadeh, C. S. Edrington, D. M. Soto, G. M. Rivera, “Comparative study of intensive pulse load impact on active and passive rectification system in MVDC ship power generation unit”, 2013 IEEE International Electric Machines and Drives Conference, pp. 1326-1332.
    [22] HOMER, the Micro-Power Optimization Model; ver.2.68Beta, NREL; 2009.
    [23] K. L. Deepak, “Optimization of PV/wind/Micro-Hydro/Diesel Hybrid Power System in HOMER”, International Journal on Electrical Engineering and Informatics, 3(3), 307–325, 2011.
    [24] C. Abbey, J. Robinson, G. Joos, “Integrating renewable energy sources and storage into isolated diesel generator supplied electric power systems”, IEEE Power Electronics and Motion Control Conference, 2008. EPE-PEMC 2008. 13th (pp. 2178-2183).
    [25] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. L, Y. Ding, “Progress in electrical energy storage system: A critical review”, (2009) Progress in Natural Science, 19(3), 291-312.
    [26] R. Rivera, “Small wind/photovoltaic hybrid renewable energy system optimization”, (2008) In Masters Abstracts International (Vol. 46, No. 06).
    [27] F. Rahman, S. Rehman, M. A. Abdul-Majeed, “Overview of energy storage systems for storing electricity from renewable energy sources in Saudi Arabia”, (2012) Renewable and Sustainable Energy Reviews, 16(1), 274-283.
    [28] B. O. Zhao, C. S. Wang, X. S. Zhang, “A survey of suitable energy storage for island stand-alone microgrid and commercial operation mode”, (2013) Automation of Electric Power Systems, 37(4), 21-27.
    [29] R. B. Schainker, “Executive overview: energy storage options for a sustainable energy future”, Power Engineering Society General Meeting, (2004). IEEE (pp. 2309-2314). IEEE.
    [30] P. Komor, J. Glassmire, “Electricity Storage and Renewables for Island Power”, (2012) International Renewable Energy Agency, Abu Dhabi.
    [31] A. Kaabeche, M. Belhamel, R. Ibtiouen, “Optimal Sizing Method for Standalone Hybrid PV/Wind Power Generation System”, (2010) Revue des Energies Renouvelables (SMEE’10) Bou Ismail Tipaza, PP. 205–213.
    [32] L. E. Weldemariam, “Genset-solar-wind hybrid power system of off-grid power station for rural applications”, Doctoral dissertation, TU Delft, Delft University of Technology, 2010.
    [33] S. Phrakonkham, J. Y. L. Chenadec, D. Diallo, G. Remy, and C. Marchand, “Reviews on Micro-Grid Configuration and Dedicated Hybrid System Optimization Software Tools: Application to Laos”, (2010) Engineering Journal, 14(3):15–34.
    [34] M. Wollny, M. Hermes, “Ac Coupled Hybrid Systems and Mini Grids”, ANZSES Solar, 2011.
    [35] M. Wollny and P. Mark, “Flexible Concept for Off Grid Electricity Supply: Current Trend for Village Solar Power Supply in Provinces of China”, SMA Technology AB, 2011.
    [36] A. Graillot, “Hybrid Micro Grids for Rural Electrification: Developing Appropriate Technology”, TTA, Trama Tecnoambiental, S. l. AIE Event, 2009.
    [37] HOMER, the Micro-Power Optimization Model; ver.2.68Beta, NREL; 2009.
    [38] NASA Surface Meteorology and Solar Energy, Available in June 2016 from website: https://eosweb.larc.nasa.gov/cgi-bin/sse/grid.cgi?&num=302111&lat=20.5&hgt=100&submit=Submit&veg=17&sitelev=&email=skip@larc.nasa.gov&p=grid_id&p=avg_dnr&step=2&lon=121.5

    無法下載圖示 校內:2021-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE