| 研究生: |
黃智裕 Huang, Chih-Yu |
|---|---|
| 論文名稱: |
病毒的thymidine kinase與細胞的thrombomodulin lectin-like domain促進第一型疱疹病毒在小鼠的感染 The effects of viral and cellular factors on herpes simplex virus 1 infection |
| 指導教授: |
陳舜華
Chen, Shun-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 第一型疱疹病毒 、thymidine kinase 、凝血酶調節素 |
| 外文關鍵詞: | HSV-1, thymidine kinase, thrombomodulin |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一型疱疹病毒本身以及宿主體內的因子皆能夠調控病毒的感染而影響病毒引起疾病的嚴重性,例如病毒在免疫缺陷病人建立持續性感染。透過小鼠實驗也可以發現第一型疱疹病毒能夠潛伏在健康的小鼠和在免疫缺陷的小鼠上建立持續性感染。病毒的thymidine kinase (TK)被認為是在免疫缺陷小鼠的神經組織中建立持續性感染最重要的因子,因為缺乏病毒TK和UL24的病毒只能夠在嚴重複合型免疫缺失小鼠的眼睛而無法在三叉神經以及腦幹的神經組織建立持續性感染。我們發現在感染缺乏TK病毒小鼠的三叉神經與腦幹有CD4和CD8 T細胞的浸潤,因此我們使用了三種基因改造(TK缺陷或是TK和UL24皆缺陷)的變異病毒以及兩種T細胞剔除小鼠之成鼠來探討第一型疱疹病毒的TK和宿主T細胞在病毒於神經組織中建立持續性感染所扮演的角色。結果顯示在感染變異病毒28天後,三種變異的病毒都能夠在T細胞剔除小鼠的三叉神經和腦幹中分別以高達100%和93%的比例建立持續性感染。根據結果推論宿主的T細胞能夠阻斷第一型疱疹病毒在老鼠的神經組織中建立持續性感染,而且病毒的TK在免疫缺陷小鼠建立持續性感染的過程並非必要因子。因為在神經組織中也可以測到比眼睛還要高的病毒濃度,此外病毒的膜蛋白B(晚期抗原)也能夠在感染TK缺陷病毒之T細胞剔除鼠的腦幹神經細胞裡被偵測到,由這兩個發現推論,成鼠的神經細胞能夠支持TK缺陷病毒的複製。除了病毒因子之外,我們也同時探討控制第一型疱疹病毒感染的細胞因子。在所有第一型疱疹病毒所引起的疾病中,疱疹性腦炎最為致命。我們的小鼠研究發現凝血酶調節素的一個區域可以控制第一型疱疹病毒引起之腦炎的嚴重程度。目前我們仍持續在探討凝血酶調節素的一個區域如何去影響腦炎的發展進程。
Both viral and host factors can modulate herpes simplex virus 1 (HSV-1) infection, which causes serious problems, especially in immunocompromised patients with persistent infection. In consistent with humans, HSV-1 establishes latency in immunocompetent mice and persistent infection in immunocompromised mice. Viral thymidine kinase (TK) is shown to be essential for virus to establish persistent infection in neural tissues of immunocompromised mice, as the mutant virus with defects in both TK and UL24 is detected in the eye, but not in the trigeminal ganglion and brain stem, of severe combined immunodeficiency mice one month after infection. We detected the infiltration of CD4 and CD8 T cells into the trigeminal ganglion and brain stem of mice infected with a TK-negative mutant. Therefore the present study was designated to investigate the importance of viral TK and host T cells for HSV-1 to persist in neural tissues using three genetically engineered mutant viruses with defects in TK or in both TK and UL24 to infect two backgrounds of adult nude mice. All three mutant viruses could establish persistent infection in the brain stems and trigeminal ganglia of nude mice with frequencies up to 100% and 93%, respectively 28 days after infection. Thus, host T cells block HSV-1 persistent infection in mouse neural tissues, and viral TK is dispensable for virus to establish persistent infection in immunocompromised mice. Furthermore, a high viral titer was detected in neural tissues compared with the eye. Viral glycoprotein B, a true late antigen, was detected in brainstem neurons of nude mice persistently infected with the TK-negative mutant. These two findings suggest that adult mouse neurons can support the replication of TK-negative HSV-1. In addition to viral factors, we also search the host factors controlling HSV-1 infection. Our mouse study found that the domain of thrombomodulin regulates the severity of virus-induced encephalitis, which is the most devastating consequence of infection. We are currently searching how the thrombomodulin domain influences the progression of encephalitis.
Abbott, N.J., Patabendige, A.A., Dolman, D.E., Yusof, S.R., and Begley, D.J. (2010). Structure and function of the blood-brain barrier. Neurobiol Dis 37, 13-25.
Abeyama, K., Stern, D.M., Ito, Y., Kawahara, K., Yoshimoto, Y., Tanaka, M., Uchimura, T., Ida, N., Yamazaki, Y., Yamada, S., et al. (2005). The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest 115, 1267-1274.
Argaw, A.T., Zhang, Y., Snyder, B.J., Zhao, M.L., Kopp, N., Lee, S.C., Raine, C.S., Brosnan, C.F., and John, G.R. (2006). IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol 177, 5574-5584.
Cantin, E., Tanamachi, B., and Openshaw, H. (1999). Role for gamma interferon in control of herpes simplex virus type 1 reactivation. J Virol 73, 3418-3423.
Chen, S.H., Cook, W.J., Grove, K.L., and Coen, D.M. (1998). Human thymidine kinase can functionally replace herpes simplex virus type 1 thymidine kinase for viral replication in mouse sensory ganglia and reactivation from latency upon explant. J Virol 72, 6710-6715.
Chen, S.H., Lin, Y.W., Griffiths, A., Huang, W.Y., and Chen, S.H. (2006a). Competition and complementation between thymidine kinase-negative and wild-type herpes simplex virus during co-infection of mouse trigeminal ganglia. J Gen Virol 87, 3495-3502.
Chen, S.H., Pearson, A., Coen, D.M., and Chen, S.H. (2004). Failure of thymidine kinase-negative herpes simplex virus to reactivate from latency following efficient establishment. J Virol 78, 520-523.
Chen, S.H., Yao, H.W., Huang, W.Y., Hsu, K.S., Lei, H.Y., Shiau, A.L., and Chen, S.H. (2006b). Efficient reactivation of latent herpes simplex virus from mouse central nervous system tissues. J Virol 80, 12387-12392.
Christophers, J., Clayton, J., Craske, J., Ward, R., Collins, P., Trowbridge, M., and Darby, G. (1998). Survey of resistance of herpes simplex virus to acyclovir in northwest England. Antimicrob Agents Chemother 42, 868-872.
Coen, D.M., Kosz-Vnenchak, M., Jacobson, J.G., Leib, D.A., Bogard, C.L., Schaffer, P.A., Tyler, K.L., and Knipe, D.M. (1989). Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci U S A 86, 4736-4740.
Coen, D.M., and Schaffer, P.A. (2003). Antiherpesvirus drugs: a promising spectrum of new drugs and drug targets. Nat Rev Drug Discov 2, 278-288.
Conway, E.M., Van de Wouwer, M., Pollefeyt, S., Jurk, K., Van Aken, H., De Vriese, A., Weitz, J.I., Weiler, H., Hellings, P.W., Schaeffer, P., et al. (2002). The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med 196, 565-577.
Davar, G., Kramer, M.F., Garber, D., Roca, A.L., Andersen, J.K., Bebrin, W., Coen, D.M., Kosz-Vnenchak, M., Knipe, D.M., Breakefield, X.O., et al. (1994). Comparative efficacy of expression of genes delivered to mouse sensory neurons with herpes virus vectors. J Comp Neurol 339, 3-11.
Decman, V., Kinchington, P.R., Harvey, S.A., and Hendricks, R.L. (2005). Gamma interferon can block herpes simplex virus type 1 reactivation from latency, even in the presence of late gene expression. J Virol 79, 10339-10347.
Efstathiou, S., Kemp, S., Darby, G., and Minson, A.C. (1989). The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. J Gen Virol 70 ( Pt 4), 869-879.
Esmon, C.T. (1987). The regulation of natural anticoagulant pathways. Science 235, 1348-1352.
Esmon, C.T. (1989). The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem 264, 4743-4746.
Fyfe, J.A., Keller, P.M., Furman, P.A., Miller, R.L., and Elion, G.B. (1978). Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine. J Biol Chem 253, 8721-8727.
Ghiasi, H., Cai, S., Perng, G.C., Nesburn, A.B., and Wechsler, S.L. (2000). Both CD4+ and CD8+ T cells are involved in protection against HSV-1 induced corneal scarring. Br J Ophthalmol 84, 408-412.
Griffiths, A., Chen, S.H., Horsburgh, B.C., and Coen, D.M. (2003). Translational compensation of a frameshift mutation affecting herpes simplex virus thymidine kinase is sufficient to permit reactivation from latency. J Virol 77, 4703-4709.
Horsburgh, B.C., Chen, S.H., Hu, A., Mulamba, G.B., Burns, W.H., and Coen, D.M. (1998). Recurrent acyclovir-resistant herpes simplex in an immunocompromised patient: can strain differences compensate for loss of thymidine kinase in pathogenesis? J Infect Dis 178, 618-625.
Huang, H.C., Shi, G.Y., Jiang, S.J., Shi, C.S., Wu, C.M., Yang, H.Y., and Wu, H.L. (2003). Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem 278, 46750-46759.
Huang, W.Y., Su, Y.H., Yao, H.W., Ling, P., Tung, Y.Y., Chen, S.H., Wang, X., and Chen, S.H. (2010). Beta interferon plus gamma interferon efficiently reduces acyclovir-resistant herpes simplex virus infection in mice in a T-cell-independent manner. J Gen Virol 91, 591-598.
Khanna, K.M., Bonneau, R.H., Kinchington, P.R., and Hendricks, R.L. (2003). Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 18, 593-603.
Knickelbein, J.E., Khanna, K.M., Yee, M.B., Baty, C.J., Kinchington, P.R., and Hendricks, R.L. (2008). Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science 322, 268-271.
Kurt-Jones, E.A., Chan, M., Zhou, S., Wang, J., Reed, G., Bronson, R., Arnold, M.M., Knipe, D.M., and Finberg, R.W. (2004). Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci U S A 101, 1315-1320.
Li, Y.H., Kuo, C.H., Shi, G.Y., and Wu, H.L. (2012). The role of thrombomodulin lectin-like domain in inflammation. J Biomed Sci 19, 34.
Liu, T., Khanna, K.M., Chen, X., Fink, D.J., and Hendricks, R.L. (2000). CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J Exp Med 191, 1459-1466.
Markert, J.M., Malick, A., Coen, D.M., and Martuza, R.L. (1993). Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir. Neurosurgery 32, 597-603.
Martuza, R.L., Malick, A., Markert, J.M., Ruffner, K.L., and Coen, D.M. (1991). Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252, 854-856.
Metcalf, J.F., Hamilton, D.S., and Reichert, R.W. (1979). Herpetic keratitis in athymic (nude) mice. Infect Immun 26, 1164-1171.
Miller, W.H., and Miller, R.L. (1982). Phosphorylation of acyclovir diphosphate by cellular enzymes. Biochem Pharmacol 31, 3879-3884.
Minagawa, H., Sakuma, S., Mohri, S., Mori, R., and Watanabe, T. (1988). Herpes simplex virus type 1 infection in mice with severe combined immunodeficiency (SCID). Arch Virol 103, 73-82.
Pelosi, E., Mulamba, G.B., and Coen, D.M. (1998). Penciclovir and pathogenesis phenotypes of drug-resistant Herpes simplex virus mutants. Antiviral Res 37, 17-28.
Roizman, B., Knipe, D.M., and Whitley, R.J. (2013). Herpes Simplex Viruses. In Fields Virology, D.M. Knipe, and P.M. Howley, eds. (Philadelphia, PA 19106 USA: Lippincott Williams & Wilkins), pp. 1823-1897.
Segre, J.A., Nemhauser, J.L., Taylor, B.A., Nadeau, J.H., and Lander, E.S. (1995). Positional cloning of the nude locus: genetic, physical, and transcription maps of the region and mutations in the mouse and rat. Genomics 28, 549-559.
Shi, C.S., Shi, G.Y., Hsiao, H.M., Kao, Y.C., Kuo, K.L., Ma, C.Y., Kuo, C.H., Chang, B.I., Chang, C.F., Lin, C.H., et al. (2008). Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood 112, 3661-3670.
Smith, J.S., and Robinson, N.J. (2002). Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. J Infect Dis 186 Suppl 1, S3-28.
Stranska, R., van Loon, A.M., Polman, M., Beersma, M.F., Bredius, R.G., Lankester, A.C., Meijer, E., and Schuurman, R. (2004). Genotypic and phenotypic characterization of acyclovir-resistant herpes simplex viruses isolated from haematopoietic stem cell transplant recipients. Antivir Ther 9, 565-575.
Su, Y.H., Oakes, J.E., and Lausch, R.N. (1990). Ocular avirulence of a herpes simplex virus type 1 strain is associated with heightened sensitivity to alpha/beta interferon. J Virol 64, 2187-2192.
Tabuchi, K., Chen, G., Sudhof, T.C., and Shen, J. (2009). Conditional forebrain inactivation of nicastrin causes progressive memory impairment and age-related neurodegeneration. J Neurosci 29, 7290-7301.
Terry, R.L., Getts, D.R., Deffrasnes, C., van Vreden, C., Campbell, I.L., and King, N.J. (2012). Inflammatory monocytes and the pathogenesis of viral encephalitis. J Neuroinflammation 9, 270.
Tsao, N., Hsu, H.P., Wu, C.M., Liu, C.C., and Lei, H.Y. (2001). Tumour necrosis factor-alpha causes an increase in blood-brain barrier permeability during sepsis. J Med Microbiol 50, 812-821.
Tumpey, T.M., Chen, S.H., Oakes, J.E., and Lausch, R.N. (1996). Neutrophil-mediated suppression of virus replication after herpes simplex virus type 1 infection of the murine cornea. J Virol 70, 898-904.
Valyi-Nagy, T., Gesser, R.M., Raengsakulrach, B., Deshmane, S.L., Randazzo, B.P., Dillner, A.J., and Fraser, N.W. (1994). A thymidine kinase-negative HSV-1 strain establishes a persistent infection in SCID mice that features uncontrolled peripheral replication but only marginal nervous system involvement. Virology 199, 484-490.
Wang, L.C., Chen, S.O., Chang, S.P., Lee, Y.P., Yu, C.K., Chen, C.L., Tseng, P.C., Hsieh, C.Y., Chen, S.H., and Lin, C.F. (2015). Enterovirus 71 Proteins 2A and 3D Antagonize the Antiviral Activity of Gamma Interferon via Signaling Attenuation. J Virol 89, 7028-7037.
Weiler, H., and Isermann, B.H. (2003). Thrombomodulin. J Thromb Haemost 1, 1515-1524.
Whitley, R.J. (1991). Herpes simplex virus infections of the central nervous system. Encephalitis and neonatal herpes. Drugs 42, 406-427.
Wilcox, C.L., Crnic, L.S., and Pizer, L.I. (1992). Replication, latent infection, and reactivation in neuronal culture with a herpes simplex virus thymidine kinase-negative mutant. Virology 187, 348-352.
Yamagami, S., Mori, K., and Kawakita, Y. (1972). Changes of thymidine kinase in the developing rat brain. J Neurochem 19, 369-376.
Yao, H.W., Ling, P., Chen, S.H., Tung, Y.Y., and Chen, S.H. (2012). Factors affecting herpes simplex virus reactivation from the explanted mouse brain. Virology 433, 116-123.