| 研究生: |
林逸昌 Lin, Yi-Cahng |
|---|---|
| 論文名稱: |
(Ca1-xSrx)(Mg1/3Nb2/3)O3 陶瓷材料的結構與微波介電性質 Crystal Structure and Microwave Dielectric Property Relations in (Ca1-xSrx)(Mg1/3Nb2/3)O3 Ceramics |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 複合鈣鈦礦 、微波介電性質 |
| 外文關鍵詞: | microwave dielectric properties, complex perovskite |
| 相關次數: | 點閱:111 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
複合鈣鈦礦陶瓷材料系統由於具有高介電常數 (εr) 、高品質因數 (Q) 和趨近於零的共振頻率溫度係數 (τf) ,而被廣泛應用於微波介電材料的研究上,然而大多數的研究針對外在因素對介電性質的影響,像是藉由製程提升密度來增進介電性質以及二次相 (secondary phase) 對介電性質的影響等,鮮少有研究探討成分內在因素與介電性質的相互關係。
本研究探討以 Sr2+ 添加於 Ca(Mg1/3Nb2/3)O3 複合鈣鈦礦系統對結構與性質的影響,利用X光粉末繞射之結果,並進行Rietveld晶體結構精算、拉曼光譜量測與穿透式電子顯微鏡 (TEM) 觀察,配合微波介電性質量測之結果,發現隨著 Sr2+ 的添加, εr 有增加的趨勢, τf 則較純 CaMN 更趨近於零,而 Q×f 則出現了下降的現象。
綜合各項結果顯示, CSMN 系統的 B-site 有序程度受到 A-site 陽離子取代出現變化,推測對此系統由於 Sr2+ 的添加造成 B-site 陽離子有序排列程度、有序區域大小的改變,同樣也造成燒結體晶粒成長的影響,進而對 Q×f 同時有了外在與內在因素的影響,而使得 Q×f 大幅下降。
Complex perovskite ceramics with high relative permittivity (εr) , high quality factor (Q) , and low temperature coefficient of resonator frequency (τf) , are investigated on microwave dielectric materials extensively. Nevertheless, most studies focus on the relations between microwave dielectric properties and extrinsic factors (density, secondary phases etc.) , a few of researches investigate the phenomena between intrinsic factors and microwave dielectric properties.
This study investigates the effects of Sr2+ substitution on the crystal structure in a Ca(Mg1/3Nb2/3)O3 (CaMN) complex perovskite system using X-ray powder diffractiometer, Raman spectroscopy, and transmission electron microscopy (TEM) ; all the microwave dielectric properties are characterized in the microwave range. As the increasing of Sr2+ substitution, the study shows εr increases, τf and Q×f are both lower than them of pure CaMN.
Relying on the results, the ordering degree of B-site cations in CSMN system is changed with the substitution of A-site cations. We speculate that ordering degree, domain size of B-site cations and grain growth in the CSMN system are changed with Sr2+ substitution, and these extrinsic and intrinsic factors all make Q×f reduced substantially.
[1] R. D. Richtmyer, “Dielectric Resonator,” J. Appl. Phys., 10, 391-398 (1939).
[2] S. B. Cohn, “Microwave Bandpass Filters Containing High-Q Dielectric Resonator,” IEEE Trans. On MTT, MTT-16, 217-218 (1968).
[3] Hiroshi Kagata and Junichi Kato, “Dielectric Properties of Ca-Based Complex Perovskite at Microwave Frequencies,” Jpn. J. Appl. Phys., 33, 5463-5465 (1994).
[4] Shoichiro Nomura, “Ceramics for Microwave Dielectric Resonator,” Ferroelectrics, 49, 61-70 (1983).
[5] C. S. Park, J. H. Paik, S. Nahm, H. J. Lee, H. M. Park, and K. Y. Kim, “Crystal Structure of A2+(Mg1/3Nb2/3)O3, (A2+ = Sr2+ and Ca2+) Ceramics,” J. Mater. Science. Lett., 18, 691-694 (1999).
[6] Chun-Te Lee, Yi-Chang Lin, Chi-Yuen Huang, Che-Yi Su, and Ching-Li Hu, “Cation Ordering and Dielectric Characteristics in Barium Zinc Niobate,” J. Am. Ceram. Soc., 90 [2], 483-489 (2007).
[7] N. Setter and L. E. Cross, “The Contribution of Structural Disorder to Diffuse Phase Transitions in Ferroelectrics,” J. Mater. Sci., 15, 2478-2482 (1980).
[8] F. Galasso and W. Darby, “Ordering of the Octahedrally Coordinated Cation. Position in the Perovskite Structure,” J. Phys. Chem., 66, 131-132 (1962).
[9] A. M. Glazer, “The Classification of Tilted Octahedra in Perovskite,” Acta Cryst., B28, 3384-3392 (1972).
[10] A. M. Glazer, “Simple Ways of Determining Perovskite Structure,” Acta Cryst., A31, 756-762 (1975).
[11] H. J. Lee, H. M. Park, Y. W. Song, Y. K. Cho, J. H. Paik, S. Nahm, and J. D. Byun, “Microstructure of Lanthanum Magnesium Niobate at Elevate Temperature,” J. Am. Ceram. Soc., 83 [4], 943-945 (2000).
[12] H. J. Lee, H. M. Park, Y. W. Song, Y. K. Cho, J. H. Paik, S. Nahm, and J. D. Byun, “Two Types of Domain Boundaries in Lanthanum Magnesium Niobate,” J. Am. Ceram. Soc., 83 [11], 2875-2877 (2000).
[13] O. Prytz and J. Tafto, “Accurate Determination of Orientation Relationships between Ferroelastic Domains: The Tetragonal to Monoclinic Transition in LaNbO4 as an example,” Acta Mat., 53, 297-302 (2005).
[14] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd Ed., John Wiley and Sons, New York (1976).
[15] C. G. Bergeron and S. H. Risbud, Introduction to Phase Equilibria in Ceramics, The American Ceramic Society Inc., Columbus (1984)
[16] O. Muller and R. Roy, The Major Ternary Structural Families, Springer, New York (1974).
[17] I. M. Reaney, E. L. Colla, and N. Setter, “Dielectric and Structural Characteristics of Ba and Sr-based Complex Perovskite as a Function of Tolerance Factor,” Jpn. J. Appl. Phys.,33, 3984–3990 (1994).
[18] 黃恩萍,角閃石類礦物之拉曼光譜研究,國立成功大學地球科學研究所碩士論文,2003
[19] I. M. Reaney and David Iddles, “Microwave Dielectric Ceramics for Resonators and Filters in Mobile Phone Networks,” J. Am. Ceram. Soc., 89 [7], 2063-2072 (2006).
[20] David I. Woodward and I. M. Reaney, “Electron Diffraction of Tilted Perovskites,” Acta Cryst., B61, 387-399 (2005).
[21] I. G. Siny, R. Tao, R. S. Katiyar, R. Guo, and A. S. Bhalla, “ Raman Spectroscopy of Mg-Ta Order-Disorder in Ba(Mg1/3Ta2/3)O3,” J. Phys. Chem. Solids, 59 [2], 181-195 (1998).
[22] B. K. Kim, H. Hamaguchi, I. T. Kim, and K. S. Hong, “ Probing of 1:2 Ordering in Ba(Ni1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3 Ceramics by XRD and Raman Spectroscopy,” J. Am. Ceram. Soc., 78 [11], 3117-3120 (1995).
[23] C. T. Chia, Y. C. Chen, H. F. Cheng, and I. N. Lin, “Correlation of Microwave Properties and Normal Vibration modes of xBa(Mg1/3Ta2/3)O3- (1-x)Ba(Mg1/3Nb2/3)O3 ceramics: I. Raman Spectroscopy,” J. Appl. Phys., 94 [5], 3360-3364 (2003).
[24] 吳朗,電子陶瓷,全欣科技圖書 (1994)。
[25] D. K. Cheng, Field and Wave Electromagnetic, Addison Wesley, Mass., 407-412 (1989).
[26] 劉適嘉,Ba[ZrxZn(1-x)/3Nb2(1-x)/3]O3 介電陶瓷之微波特性及其應用,國立成功大學電機工程研究所碩士論文 (2001)。
[27] D. Kajfez, “Computed Modal Field Distribution for Isolated Dielectric Resonators,” IEEE. Trans. MTT, MTT-32, 1609-1616 (1984).
[28] D. Kajfez, “Basic principle give understanding of Dielectric Wave-guides and Resonators,” Microwave System News, 13, 152-161 (1983).
[29] D. Kajfez and P. Guillon, Dielectric Resontors, Artech House, Dedham, Mass. (1979).
[30] C. Y. Huang, Thermal Expansion Behavior of Sodium Zirconium Phosphate Structure type Materials, Ph. D. Thesis, The Pennsylvania State University, U.S.A. (1990).
[31] A. C. Larson and R. B. Von Dreele, General Structure Analysis System, Los Alamos National Laboratory, Los Alamos (1988).
[32] 王俊傑,ZnNb2O6 介電陶瓷材料燒結與微波特性之研究,國立成功大學電機工程研究所碩士論文 (2003)。
[33] I. Levin, L. A. Bendersky, J. P. Cline, R. S. Roth, and T. A. Vanderah, “Octahedral Tilting and Cation Ordering in Perovskite-Like Ca4Nb2O9 = 3‧Ca(Ca1/3Nb2/3)O3 Polymorphs,” J. Solid State Chem., 150, 43-61(2000).
[34] I. Levin, J. Y. Chan, R. G. Geyer, J. E. Maslar, and T. A. Vanderah, “Cation Ordering Types and Dielectric Properties in the Complex Perovskite Ca(Ca1/3Nb2/3)O3 ,” J. Solid State Chem., 156, 122-134 (2001).
[35] Noboru Ichinose and Takeshi Shimada, “Effect of Grain Size and Secondary Phase on Microwave Dielectric Properties of Ba(Mg1/3Ta2/3)O3 and Ba([Mg,Zn]1/3Ta2/3)O3 Systems,” J. Euro. Ceram. Soc., 26,1755-1759 (2006).