簡易檢索 / 詳目顯示

研究生: 洪聖峰
Hung, Sheng-Feng
論文名稱: 以3DEC模擬市道172線42k+300處邊坡破壞後行為之研究
Study on Simulating the Post Failure Behavior of a Slope at Highway-172 42k+300 by 3DEC
指導教授: 吳建宏
Wu, Jian-Hong
李德河
Lee, Der-Her
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 167
中文關鍵詞: 邊坡崩塌數值模擬離散元素法3DECUnity
外文關鍵詞: Slope collapse, Numerical simulation, Discrete element method, 3DEC, Unity
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,全球暖化以及氣候變遷明顯造成極端天氣事件頻繁發生,國內外時常有邊坡破壞及土砂災害的新聞,破壞時往往在數十秒內伴隨大量的土石滑動而造成災害。本研究以市道172線42k+300處之邊坡進行研究,透過數值模型模擬172線42k+300處邊坡的崩塌行為及影響範圍,使用離散元素法(Distinct Element Method, DEM)的Three-Dimensional Distinct Element Code (3DEC)軟體建立三維邊坡模型,探討本研究區域塊體受重力滑落的崩塌歷程以及崩塌範圍,以不同弱面摩擦角對邊坡破壞程度進行敏感度分析,並將模擬成果以Unity軟體呈現 3D 可視化破壞機制和受影響區域。
    研究結果顯示,以不同弱面摩擦角(10°、15°、20°)模擬皆會產生滑動,且少數零星塊體會滑落至白水溪,位於道路及下邊坡商家之觀察點具有較大位移量,道路及以下區域須提防嚴重邊坡破壞的發生,一旦發生崩塌,172線42k+300路段及周圍聚落皆會受土石崩塌影響,需要特別留意。綜合來說,市道172線42k+300處之邊坡崩塌範圍集中在172線道路以下至下邊坡地勢較突出的區域,此區域範圍為崩塌時的高度風險區,應列為防災管理之重點監測區域,透過數值模擬成果可以為當地居民提供安全評估,減少災害受損。

    In recent years, global warming and climate change have led to frequent extreme weather events, causing frequent landslides and sediment-related disasters both domestically and internationally. This study focuses on the slope at Highway Tainan-172 42k+300, using numerical models to simulate the collapse behavior and impact range of the slope. A three-dimensional slope model was developed using the 3DEC software, based on the three-dimensional Discrete Element Method, to analyze the collapse process and range of the slope under gravitational forces. Sensitivity analysis was conducted by varying the joint friction angles, and the simulation results were visualized using Unity software to present the 3D failure mechanism and affected areas.
    The study results indicate that simulations with different joint friction angles (10°, 15°, 20°) all resulted in sliding, with a few isolated blocks sliding into the Baishuixi River. Observation points located at businesses on the road and lower slopes exhibited significant displacement, highlighting the need to prevent severe slope failures in these areas. In the event of a collapse, Highway-172 42k+300 and surrounding settlements would be affected by landslides, warranting special attention.
    Overall, the collapse range of the slope at Highway-172 42k+300 is concentrated in the area below the road to the prominent lower slope. This area is identified as a high-risk zone during landslides and should be prioritized for disaster management monitoring. The numerical simulation results can provide safety assessments for local residents, reducing disaster threats.

    摘要 I ABSTRACT II 致謝 VI 目錄 VII 圖目錄 X 表目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 研究流程 4 第二章 文獻回顧 6 2-1 邊坡崩塌分類 6 2-1-1 邊坡崩塌類型 6 2-2 邊坡連續體數值模擬分析方法 12 2-2-1 邊界元素法(Boundary Element Method, BEM) 12 2-2-2 有限元素法(Finite Element Method, FEM) 12 2-2-3 有限差分法(Finite Difference Method, FDM) 14 2-3 離散元素法(DISCRETE ELEMENT METHOD, DEM) 15 2-3-1 離散元素法接觸判定 15 2-3-2 計算循環步驟 20 2-3-3 接觸力計算 20 2-3-4 庫倫滑移模型 23 第三章 研究區域 24 3-1 區域位置及簡介 24 3-2 區域地形與地質 26 3-3 降雨概況 29 3-4 現地鑽探資料 31 3-5 現地傾斜管觀測資料 35 3-6 歷史災害 41 3-7 地表滑動跡象 42 3-8 近年研究成果 45 第四章 研究方法 46 4-1 3DEC模型 46 4-1-1 軟體介紹 46 4-1-2 軟體正確性驗證 46 4-1-3 3DEC模型建立 55 4-1-4 參數設置 62 4-2 UNITY模型 64 4-2-1 軟體介紹 64 4-2-2 數據整理與建立模型 65 第五章 研究成果 68 5-1 3DEC滑動模型 68 5-2 沿172線無設置擋土牆3DEC模擬成果 69 5-2-1 弱面摩擦角10° 69 5-2-2 弱面摩擦角15° 76 5-2-3 弱面摩擦角20° 83 5-3 沿172線設置擋土牆3DEC模擬成果 93 5-3-1 弱面摩擦角10° 93 5-3-2 弱面摩擦角15° 100 5-3-3 弱面摩擦角20° 107 5-4 弱面摩擦角敏感度分析 117 5-4-1 沿172線無設置擋土牆弱面摩擦角5° 117 5-4-2 沿172線設置擋土牆弱面摩擦角5° 125 5-5 UNITY模擬成果 131 第六章 結論與建議 143 6-1 結論 143 6-2 建議 144 參考文獻 145

    [1] 中央氣象局 (2008),「台灣氣候變化統計報告」,辛在勤,初版,台北,台灣。
    [2] 行政院農業委員會水土保持局 (2017),水土保持手冊。
    [3] 吳建宏、謝秉軒 (2020),高雄茂林區D048大規模崩塌潛勢區邊坡行為與預警之研究-萬山邊坡破壞後岩盤行為模擬之研究,科技部期中報告。
    [4] 吳憶珊 (2018),應用三維數值模擬技術探討地下水位與邊坡崩塌之研究,國立臺灣海洋大學河海工程研究所,碩士論文,基隆,台灣。
    [5] 林啟文、洪國騰 (2012),五萬分之一臺灣地質圖,美濃,經濟部中央地質調查所,新北,台灣。
    [6] 青山工程顧問股份有限公司(2021),台南市政府工務局 110-112 年度溪北山區市道地滑邊坡監測及預警系統建置服務工作-第一次半年監測成果報告。
    [7] 范嘉程、馮道偉 (2003),以有限元素法探討暴雨時邊坡之穩定性,地工技術 ,95,61-74。
    [8] 徐文杰、柳鈞元、黃韋凱、蕭富元 (2022),利用數值地形資料建立3DEC數值模型及其應用於邊坡穩定分析,中興工程顧問社季刊,156,67-77。
    [9] 郭子瑄 (2023),三維不連續體數值分析法模擬D048 萬山邊坡破壞後行為之研究,國立成功大學土木工程研究所,碩士論文,台南,台灣。
    [10] 安徒和 (2022),以3DEC 模擬地滑引致地表振動之研究: 以小林村地滑為例,國立成功大學土木工程研究所,碩士論文,台南,台灣。
    [11] 郭家華 (2023) ,利用擬真三維地層模擬探討南市172縣溫泉公路邊坡穩定分析之研究,國立成功大學資源工程研究所,碩士論文,台南,台灣。
    [12] 張國欽、葉信富、林榮潤、陳耐錦、柯建仲、陳榮俊(2019),結合鑽探與地球物理方法調查八寶寮崩塌地之水文地質特性,中華水土保持學報,50(2),73-88。
    [13] 陳宏宇 (1998) ,山崩,地球科學園地,第6期,12-21。
    [14] 陳文聰 (2013) ,172 線 48k 崩塌機制及治理對策之研究,國立中興大學水土保持研究所,碩士論文,台中,台灣。
    [15] 鍾明劍、陳建新、李璟芳、黃韋凱、譚志豪(2016),潛在大規模崩塌地對鄰近聚落衝擊之調查與評估方法,中華水土保持學報,47(3),122-134。
    [16] 鍾佩蓉、黃全謚、簡榮興、許志豪、曹鼎志(2015), 「土石流潛勢溪流現地調查及其防災之應用」,中興工程,126期,21-30。
    [17] 楊樹榮、林忠志、鄭錦桐、潘國樑、蔡如君、李正利 (2011),臺灣常用山崩分類系統,第14屆大地工程學術研究討論會,桃園,台灣。
    [18] 黃獻廷、葉信富、柯建仲(2021),未飽和土壤單峰與雙峰水力特性對邊坡穩定性影響之研究,農業工程學報,67(3),51-63。
    [19] 魏佳韻、游才銘、徐力平、趙紹錚、賴思翰、楊浩 (2020),國道邊坡地錨既存荷重與邊坡穩定關聯性數值模擬,第18屆大地工程研討會,屏東,台灣。
    [20] Aaron, J. and McDougall, S. (2019). Rock avalanche mobility: The role of path material, Engineering Geology, 257, 105126.
    [21] Agliardi, F., Crosta, G., and Zanchi, A. (2001). Structural constraints on deep-seated slope deformation kinematics. Engineering Geology, 59(1-2), 83-102.
    [22] Bhavikatti, S. S. (2005). Finite Element Analysis. New Age International Publishers, New delhi, India.
    [23] Brideau, M.A., Pedrazzini, A., Stead, D., Froese, C., Joboyedoff, M., and Zeyl, D.V. (2011). Three-dimensional slope stability analysis of South Peak, Crowsnest Pass, Alberta, Canada. Landslides, 8, 139-158.
    [24] Cruden, D.M., Varnes, D.J.,1996, Landslide Types and Processes, Transportation Research Board, U.S. National Academy of Sciences, Special Report, 247: 36-75
    [25] Cheng, A. H.-D., and Cheng, D. T. (2005). Heritage and early history of the boundary element method. Engineering Analysis with Boundary Elements, 29(3), 268-302.
    [26] Crosta, G. B., Imposimato, S., and Roddeman, D. G. (2003). Numerical modelling of large landslides stability and runout. Hazards Earth Syst. Sci., 3, 523-538.
    [27] Cruden, D. (1991). Simple definition of a landslide. Bulletin of the International Association of Engineering Geology - Bulletin de l'Association Internationale de Géologie de l'Ingénieur, 43.
    [28] Cundall, P. A. (1988). Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25(3), 107-116.
    [29] Cundall,P. A., and Hart, R. D. (1992). Numerical modelling of discontinua. Engineering Computations, 9(2), 101-113.
    [30] Cundall, P. A., and Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47 65.
    [31] European Academies Science Advisory Council(2018), 「Extreme weather events in Europe: Preparing for climate change adaptation: an update on EASAC's 2013 study」, Extreme Weather Events
    [32] Hungr O., Leroueil S., Picarelli L., 2014, The Varnes classification of landslide types, an update, Landslide, 11, 167-194
    [33] Hart, R., Cundall, P. A., and Lemos, J. (1988). Formulation of a three-dimensional distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25(3), 117-125.
    [34] Havaej, M., Coggan, J., Stead, D. and Elmo, D. (2016). A combined remote sensing–numerical modelling approach to the stability analysis of Delabole Slate Quarry, Cornwall, UK. Rock Mechanics and Rock Engineering volume, 49, 1227–1245.
    [35] Highland, L., and Bobrowsky, P. (2008). The Landslide Handbook–A Guide to Understanding Landslides. U.S. Geological Survey, Colorado, USA.
    [36] Itasca. (2016). Three Dimensional Distinct Element Code version 5.2 ; A manual documentation. Itasca Consulting Group, Inc., Minnesota, USA.
    [37] Itasca. (2017). 3DEC User's Guide. Itasca Consulting Group, Inc., Minnesota, USA.
    [38] Kuo, C. Y., Tai, Y. C., Chen, C. C., Chang, K. J., Siau, A. Y., Dong, J. J., and Lee, C. T. (2011). The landslide stage of the Hsiaolin catastrophe: Simulation and validation. Journal of Geophysical Research: Earth Surface, 116(F4), 1-16.
    [39] LeVeque, R. J. (2005). Finite Difference Methods for Differential Equations. University of Washington, Society for Industrial and Applied Mathematics, Philadelphia, USA.
    [40] Lin, C. H., and Lin, M. L. (2015). Evolution of the large landslide induced by Typhoon Morakot: a case study in the Butangbunasi River, southern Taiwan using the discrete element method. Engineering Geology, 197, 172-187.
    [41] Liu, B., He, K., Han, M., Hu, X., Wu, T., Wu, M., and Ma, G. Dynamic process simulation of the Xiaogangjian rockslide occurred in shattered mountain based on 3DEC and DFN. Computers and Geotechnics, 134, 104122.
    [42] Lo, C. M., Li, H. H., and Ke, C. C. (2016). Kinematic model of a translational slide in the Cidu section of the Formosan freeway. Landslides, 13(1), 141-151.
    [43] Lu, C.-Y., Tang, C.-L., Chan, Y.-C., Hu, J.-C., and Chi, C.-C. (2014). Forecasting landslide hazard by the 3D discrete element method: A case study of the unstable slope in the Lushan hot spring district, central Taiwan. Engineering Geology, 183, 14-30.
    [44] Sanz de Ojeda, P., Eugenio, E., and Galindo, R. (2021). Historical reconstruction and evolution of the large landslide of Inza (Navarra, Spain). Natural Hazards, 109(3), 2095-2126.
    [45] U.S. Geological Survey (2004). Landslide Types and Processes. USGS Publications Repository, Colorado, USA.
    [46] Varnes, D. J. (1978). Slope Movement Types and Processes. Transportation Research Board, Washington, USA.
    [47] Wang, H., Huang, J., Huang, X., and He, Z. (2021). A method of using Unity3D to simulate the whole process of three-dimensional movement of rockfall. Geomatics and Information Science of Wuhan University, 2021, 46(5), 659-671.
    [48] Wang, Z., Jiang, L., Xia, Y., Pei, Y., and Lin, M. (2013). Numerical analysis of stratified rock slope stability based on 3DEC. Applied Mechanics and Materials, 454, 133-139.
    [49] Wu, J.H., Lin, W.K., and Hu, H.T. (2018). Post-failure simulations of a large slope failure using 3DEC: The Hsien –du-shan slope, Engineering Geology, 242, 92-107.

    無法下載圖示 校內:2029-08-20公開
    校外:2029-08-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE